Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging
Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sens...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2014-02, Vol.87, p.297-310 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | |
container_start_page | 297 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 87 |
creator | Tsai, Arthur C. Jung, Tzyy-Ping Chien, Vincent S.C. Savostyanov, Alexander N. Makeig, Scott |
description | Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sensors from functionally equivalent cortical sources vary from subject to subject. This study demonstrates an approach to spatiotemporal independent component decomposition and alignment that spatially co-registers the MR-derived cortical topographies of individual subjects to a well-defined, shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and behavioral data from a stop-signal paradigm using two source-imaging approaches, both based on individual subject independent source decompositions. The first, two-stage approach uses temporal infomax ICA to separate each subject's data into temporally independent components (ICs), then estimates the source density distribution of each IC process from its scalp map and clusters similar sources across subjects (Makeig et al., 2002). The second approach, Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA), combines ICA decomposition and source current density estimation of the artifact-rejected data into a single spatiotemporal ICA decomposition for each subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of each cortical source and its event-related dynamics. Applied to the stop-signal task data, both approaches gave IC clusters that separately accounted for EEG processes expected in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly correlated source areas and time-frequency features.
•We address the issue of multi-subject source-level comparison in ICA EEG analysis.•Unlike two-stage ICA, we directly decompose EEG into independent active sources.•The so-identified active source areas are then spatially registered across subjects.•Their dynamics in the form of ERSP are, if relevant, trial-to-trial latency aligned.•We report the strategy offer more spatially compact and distinct spectral dynamics. |
doi_str_mv | 10.1016/j.neuroimage.2013.09.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516749327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913009816</els_id><sourcerecordid>3316752771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-89dbb391046e31a9ba19c554e21aa46bb02566270fda455f1411c8e1bc88e2d53</originalsourceid><addsrcrecordid>eNqFkT-P1DAQxS0E4v7AV0CRaGgSPI6djUtYLXdIJ9FAQWU5zmTlKLGDnSDx7ZloD5BorrA9xW_em_FjrABeAYfm_VgF3FL0sz1jJTjUFdcVl-oZuwauVanVQTzfa1WXLYC-Yjc5j5xzDbJ9ya6EBKgb0Vyz78eYVu_sVOQtDdZhYSd_DjOGtfChmLdp9WXeuhHdWuTFrj6uOC8xUYcPPS5IF7Gn012R45ZIYJ_Kh_Mr9mKwU8bXj-8t-_bp9PV4Xz58uft8_PBQOlmrtWx133W1Bi4brMHqzoJ2SkkUYK1suo4L1TTiwIfeSqUGoNFdi9C5tkXRq_qWvbvoLin-2DCvZvbZ4TTZgHHLBhQ0B6lrcXgalZqMpNS76tv_0JG2C7QICQpNRyhOVHuhXIo5JxzMkmj99MsAN3tSZjT_kjJ7UoZrQ0lR65tHg62bsf_b-CcaAj5eAKTP--kxmew8Boe9TxSG6aN_2uU3dn6pUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529152250</pqid></control><display><type>article</type><title>Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Tsai, Arthur C. ; Jung, Tzyy-Ping ; Chien, Vincent S.C. ; Savostyanov, Alexander N. ; Makeig, Scott</creator><creatorcontrib>Tsai, Arthur C. ; Jung, Tzyy-Ping ; Chien, Vincent S.C. ; Savostyanov, Alexander N. ; Makeig, Scott</creatorcontrib><description>Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sensors from functionally equivalent cortical sources vary from subject to subject. This study demonstrates an approach to spatiotemporal independent component decomposition and alignment that spatially co-registers the MR-derived cortical topographies of individual subjects to a well-defined, shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and behavioral data from a stop-signal paradigm using two source-imaging approaches, both based on individual subject independent source decompositions. The first, two-stage approach uses temporal infomax ICA to separate each subject's data into temporally independent components (ICs), then estimates the source density distribution of each IC process from its scalp map and clusters similar sources across subjects (Makeig et al., 2002). The second approach, Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA), combines ICA decomposition and source current density estimation of the artifact-rejected data into a single spatiotemporal ICA decomposition for each subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of each cortical source and its event-related dynamics. Applied to the stop-signal task data, both approaches gave IC clusters that separately accounted for EEG processes expected in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly correlated source areas and time-frequency features.
•We address the issue of multi-subject source-level comparison in ICA EEG analysis.•Unlike two-stage ICA, we directly decompose EEG into independent active sources.•The so-identified active source areas are then spatially registered across subjects.•Their dynamics in the form of ERSP are, if relevant, trial-to-trial latency aligned.•We report the strategy offer more spatially compact and distinct spectral dynamics.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.09.045</identifier><identifier>PMID: 24113626</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Brain - physiology ; Cortically surface-based alignment ; Decomposition ; Electroencephalography ; EMSICA ; ERSP warping ; Humans ; ICA ; Male ; Medical research ; Models, Neurological ; Signal Processing, Computer-Assisted ; Software ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-02, Vol.87, p.297-310</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-89dbb391046e31a9ba19c554e21aa46bb02566270fda455f1411c8e1bc88e2d53</citedby><cites>FETCH-LOGICAL-c435t-89dbb391046e31a9ba19c554e21aa46bb02566270fda455f1411c8e1bc88e2d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1529152250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24113626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Arthur C.</creatorcontrib><creatorcontrib>Jung, Tzyy-Ping</creatorcontrib><creatorcontrib>Chien, Vincent S.C.</creatorcontrib><creatorcontrib>Savostyanov, Alexander N.</creatorcontrib><creatorcontrib>Makeig, Scott</creatorcontrib><title>Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sensors from functionally equivalent cortical sources vary from subject to subject. This study demonstrates an approach to spatiotemporal independent component decomposition and alignment that spatially co-registers the MR-derived cortical topographies of individual subjects to a well-defined, shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and behavioral data from a stop-signal paradigm using two source-imaging approaches, both based on individual subject independent source decompositions. The first, two-stage approach uses temporal infomax ICA to separate each subject's data into temporally independent components (ICs), then estimates the source density distribution of each IC process from its scalp map and clusters similar sources across subjects (Makeig et al., 2002). The second approach, Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA), combines ICA decomposition and source current density estimation of the artifact-rejected data into a single spatiotemporal ICA decomposition for each subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of each cortical source and its event-related dynamics. Applied to the stop-signal task data, both approaches gave IC clusters that separately accounted for EEG processes expected in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly correlated source areas and time-frequency features.
•We address the issue of multi-subject source-level comparison in ICA EEG analysis.•Unlike two-stage ICA, we directly decompose EEG into independent active sources.•The so-identified active source areas are then spatially registered across subjects.•Their dynamics in the form of ERSP are, if relevant, trial-to-trial latency aligned.•We report the strategy offer more spatially compact and distinct spectral dynamics.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Cortically surface-based alignment</subject><subject>Decomposition</subject><subject>Electroencephalography</subject><subject>EMSICA</subject><subject>ERSP warping</subject><subject>Humans</subject><subject>ICA</subject><subject>Male</subject><subject>Medical research</subject><subject>Models, Neurological</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkT-P1DAQxS0E4v7AV0CRaGgSPI6djUtYLXdIJ9FAQWU5zmTlKLGDnSDx7ZloD5BorrA9xW_em_FjrABeAYfm_VgF3FL0sz1jJTjUFdcVl-oZuwauVanVQTzfa1WXLYC-Yjc5j5xzDbJ9ya6EBKgb0Vyz78eYVu_sVOQtDdZhYSd_DjOGtfChmLdp9WXeuhHdWuTFrj6uOC8xUYcPPS5IF7Gn012R45ZIYJ_Kh_Mr9mKwU8bXj-8t-_bp9PV4Xz58uft8_PBQOlmrtWx133W1Bi4brMHqzoJ2SkkUYK1suo4L1TTiwIfeSqUGoNFdi9C5tkXRq_qWvbvoLin-2DCvZvbZ4TTZgHHLBhQ0B6lrcXgalZqMpNS76tv_0JG2C7QICQpNRyhOVHuhXIo5JxzMkmj99MsAN3tSZjT_kjJ7UoZrQ0lR65tHg62bsf_b-CcaAj5eAKTP--kxmew8Boe9TxSG6aN_2uU3dn6pUw</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Tsai, Arthur C.</creator><creator>Jung, Tzyy-Ping</creator><creator>Chien, Vincent S.C.</creator><creator>Savostyanov, Alexander N.</creator><creator>Makeig, Scott</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140215</creationdate><title>Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging</title><author>Tsai, Arthur C. ; Jung, Tzyy-Ping ; Chien, Vincent S.C. ; Savostyanov, Alexander N. ; Makeig, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-89dbb391046e31a9ba19c554e21aa46bb02566270fda455f1411c8e1bc88e2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Cortically surface-based alignment</topic><topic>Decomposition</topic><topic>Electroencephalography</topic><topic>EMSICA</topic><topic>ERSP warping</topic><topic>Humans</topic><topic>ICA</topic><topic>Male</topic><topic>Medical research</topic><topic>Models, Neurological</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Arthur C.</creatorcontrib><creatorcontrib>Jung, Tzyy-Ping</creatorcontrib><creatorcontrib>Chien, Vincent S.C.</creatorcontrib><creatorcontrib>Savostyanov, Alexander N.</creatorcontrib><creatorcontrib>Makeig, Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Arthur C.</au><au>Jung, Tzyy-Ping</au><au>Chien, Vincent S.C.</au><au>Savostyanov, Alexander N.</au><au>Makeig, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-02-15</date><risdate>2014</risdate><volume>87</volume><spage>297</spage><epage>310</epage><pages>297-310</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sensors from functionally equivalent cortical sources vary from subject to subject. This study demonstrates an approach to spatiotemporal independent component decomposition and alignment that spatially co-registers the MR-derived cortical topographies of individual subjects to a well-defined, shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and behavioral data from a stop-signal paradigm using two source-imaging approaches, both based on individual subject independent source decompositions. The first, two-stage approach uses temporal infomax ICA to separate each subject's data into temporally independent components (ICs), then estimates the source density distribution of each IC process from its scalp map and clusters similar sources across subjects (Makeig et al., 2002). The second approach, Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA), combines ICA decomposition and source current density estimation of the artifact-rejected data into a single spatiotemporal ICA decomposition for each subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of each cortical source and its event-related dynamics. Applied to the stop-signal task data, both approaches gave IC clusters that separately accounted for EEG processes expected in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly correlated source areas and time-frequency features.
•We address the issue of multi-subject source-level comparison in ICA EEG analysis.•Unlike two-stage ICA, we directly decompose EEG into independent active sources.•The so-identified active source areas are then spatially registered across subjects.•Their dynamics in the form of ERSP are, if relevant, trial-to-trial latency aligned.•We report the strategy offer more spatially compact and distinct spectral dynamics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24113626</pmid><doi>10.1016/j.neuroimage.2013.09.045</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2014-02, Vol.87, p.297-310 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1516749327 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Adult Algorithms Brain - physiology Cortically surface-based alignment Decomposition Electroencephalography EMSICA ERSP warping Humans ICA Male Medical research Models, Neurological Signal Processing, Computer-Assisted Software Studies |
title | Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20surface%20alignment%20in%20multi-subject%20spatiotemporal%20independent%20EEG%20source%20imaging&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Tsai,%20Arthur%20C.&rft.date=2014-02-15&rft.volume=87&rft.spage=297&rft.epage=310&rft.pages=297-310&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.09.045&rft_dat=%3Cproquest_cross%3E3316752771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529152250&rft_id=info:pmid/24113626&rft_els_id=S1053811913009816&rfr_iscdi=true |