Three-dimensional cell migration does not follow a random walk
Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-03, Vol.111 (11), p.3949-3954 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3954 |
---|---|
container_issue | 11 |
container_start_page | 3949 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Wu, Pei-Hsun Giri, Anjil Sun, Sean X. Wirtz, Denis |
description | Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities. |
doi_str_mv | 10.1073/pnas.1318967111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516742857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23770964</jstor_id><sourcerecordid>23770964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-dfb6e3d6cf6a271a41812c64b5f0f08e58ab5c1a527ae78b02c5c379947720673</originalsourceid><addsrcrecordid>eNqNkc1P3DAQxS1EBQvtuaeWSFy4BGb8GV-QEAJaCakXOFuO40C2Sby1syD-e7zdZWl76mFkafybp3nzCPmMcIqg2NlitOkUGVZaKkTcITMEjaXkGnbJDICqsuKU75ODlOYAoEUFe2SfcqG5BDYj53eP0fuy6QY_pi6Mti-c7_ti6B6inXKjaIJPxRimog19H54LW0Q7NmEonm3_8yP50No--U-b95DcX1_dXX4rb3_cfL-8uC2dAJjKpq2lZ410rbRUoeVYIXWS16KFFiovKlsLh1ZQZb2qaqBOOKa05kpRkIodkvO17mJZD75xfpyi7c0idoONLybYzvz9M3aP5iE8GaYlByGzwMlGIIZfS58mM3Rp5dSOPiyTQYFScVoJ9T8o51QITTN6_A86D8uYj_ibQqQcBWTqbE25GFKKvt3ujWBWMZpVjOY9xjzx9U-7W_4ttwwcbYDV5FYOMVf2zHUmvqyJeZpCfFdgSkG-CXsFDairkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511124150</pqid></control><display><type>article</type><title>Three-dimensional cell migration does not follow a random walk</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Pei-Hsun ; Giri, Anjil ; Sun, Sean X. ; Wirtz, Denis</creator><creatorcontrib>Wu, Pei-Hsun ; Giri, Anjil ; Sun, Sean X. ; Wirtz, Denis</creatorcontrib><description>Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1318967111</identifier><identifier>PMID: 24594603</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actinin - chemistry ; Anisotropy ; Biological Sciences ; Cell adhesion & migration ; Cell Line, Tumor ; Cell motility ; Cell Movement - physiology ; Collagen ; Collagens ; Computer Simulation ; Correlation analysis ; Crk-Associated Substrate Protein - chemistry ; Diffusion coefficient ; Endothelial cells ; Extracellular Matrix ; Human migration ; Humans ; Modeling ; Models, Biological ; Physical Sciences ; Random walk ; Stochastic Processes ; Three dimensional modeling ; Tissues ; Trajectories ; Two dimensional modeling ; Zyxin - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-03, Vol.111 (11), p.3949-3954</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-dfb6e3d6cf6a271a41812c64b5f0f08e58ab5c1a527ae78b02c5c379947720673</citedby><cites>FETCH-LOGICAL-c500t-dfb6e3d6cf6a271a41812c64b5f0f08e58ab5c1a527ae78b02c5c379947720673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23770964$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23770964$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24594603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Giri, Anjil</creatorcontrib><creatorcontrib>Sun, Sean X.</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><title>Three-dimensional cell migration does not follow a random walk</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities.</description><subject>Actinin - chemistry</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Tumor</subject><subject>Cell motility</subject><subject>Cell Movement - physiology</subject><subject>Collagen</subject><subject>Collagens</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>Crk-Associated Substrate Protein - chemistry</subject><subject>Diffusion coefficient</subject><subject>Endothelial cells</subject><subject>Extracellular Matrix</subject><subject>Human migration</subject><subject>Humans</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Physical Sciences</subject><subject>Random walk</subject><subject>Stochastic Processes</subject><subject>Three dimensional modeling</subject><subject>Tissues</subject><subject>Trajectories</subject><subject>Two dimensional modeling</subject><subject>Zyxin - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1P3DAQxS1EBQvtuaeWSFy4BGb8GV-QEAJaCakXOFuO40C2Sby1syD-e7zdZWl76mFkafybp3nzCPmMcIqg2NlitOkUGVZaKkTcITMEjaXkGnbJDICqsuKU75ODlOYAoEUFe2SfcqG5BDYj53eP0fuy6QY_pi6Mti-c7_ti6B6inXKjaIJPxRimog19H54LW0Q7NmEonm3_8yP50No--U-b95DcX1_dXX4rb3_cfL-8uC2dAJjKpq2lZ410rbRUoeVYIXWS16KFFiovKlsLh1ZQZb2qaqBOOKa05kpRkIodkvO17mJZD75xfpyi7c0idoONLybYzvz9M3aP5iE8GaYlByGzwMlGIIZfS58mM3Rp5dSOPiyTQYFScVoJ9T8o51QITTN6_A86D8uYj_ibQqQcBWTqbE25GFKKvt3ujWBWMZpVjOY9xjzx9U-7W_4ttwwcbYDV5FYOMVf2zHUmvqyJeZpCfFdgSkG-CXsFDairkw</recordid><startdate>20140318</startdate><enddate>20140318</enddate><creator>Wu, Pei-Hsun</creator><creator>Giri, Anjil</creator><creator>Sun, Sean X.</creator><creator>Wirtz, Denis</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>5PM</scope></search><sort><creationdate>20140318</creationdate><title>Three-dimensional cell migration does not follow a random walk</title><author>Wu, Pei-Hsun ; Giri, Anjil ; Sun, Sean X. ; Wirtz, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-dfb6e3d6cf6a271a41812c64b5f0f08e58ab5c1a527ae78b02c5c379947720673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actinin - chemistry</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Tumor</topic><topic>Cell motility</topic><topic>Cell Movement - physiology</topic><topic>Collagen</topic><topic>Collagens</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>Crk-Associated Substrate Protein - chemistry</topic><topic>Diffusion coefficient</topic><topic>Endothelial cells</topic><topic>Extracellular Matrix</topic><topic>Human migration</topic><topic>Humans</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Physical Sciences</topic><topic>Random walk</topic><topic>Stochastic Processes</topic><topic>Three dimensional modeling</topic><topic>Tissues</topic><topic>Trajectories</topic><topic>Two dimensional modeling</topic><topic>Zyxin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Giri, Anjil</creatorcontrib><creatorcontrib>Sun, Sean X.</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Pei-Hsun</au><au>Giri, Anjil</au><au>Sun, Sean X.</au><au>Wirtz, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional cell migration does not follow a random walk</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-03-18</date><risdate>2014</risdate><volume>111</volume><issue>11</issue><spage>3949</spage><epage>3954</epage><pages>3949-3954</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24594603</pmid><doi>10.1073/pnas.1318967111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-03, Vol.111 (11), p.3949-3954 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1516742857 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actinin - chemistry Anisotropy Biological Sciences Cell adhesion & migration Cell Line, Tumor Cell motility Cell Movement - physiology Collagen Collagens Computer Simulation Correlation analysis Crk-Associated Substrate Protein - chemistry Diffusion coefficient Endothelial cells Extracellular Matrix Human migration Humans Modeling Models, Biological Physical Sciences Random walk Stochastic Processes Three dimensional modeling Tissues Trajectories Two dimensional modeling Zyxin - chemistry |
title | Three-dimensional cell migration does not follow a random walk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20cell%20migration%20does%20not%20follow%20a%20random%20walk&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Pei-Hsun&rft.date=2014-03-18&rft.volume=111&rft.issue=11&rft.spage=3949&rft.epage=3954&rft.pages=3949-3954&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1318967111&rft_dat=%3Cjstor_proqu%3E23770964%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511124150&rft_id=info:pmid/24594603&rft_jstor_id=23770964&rfr_iscdi=true |