Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation

The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2013-11, Vol.62 (1-2), p.52-58
Hauptverfasser: Jain, Rakeshkumar M., Mody, Kalpana, Joshi, Nidhi, Mishra, Avinash, Jha, Bhavanath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1-2
container_start_page 52
container_title International journal of biological macromolecules
container_volume 62
creator Jain, Rakeshkumar M.
Mody, Kalpana
Joshi, Nidhi
Mishra, Avinash
Jha, Bhavanath
description The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhibited significantly higher viscosity and maximum reduction in surface tension as compared to other substrates. Among several carbon substrates tested, production of biosurfactant was found to be the highest with corn powder (15.40±0.21g/l) as compared to others. The comparative chemical characterization of purified biosurfactant was done using advance analytical tools such as NMR, FT-IR, SEM, GPC, MALDI TOF–TOF MS, GC–MS, TG and DSC. Analyses indicated variation in the functional groups, monosaccharide composition, molecular mass, thermostability. Higher yield with cheaper raw materials, noteworthy stress tolerance of CP-biosurfactant toward pH and salt as well as compatibility with chemical surfactants and detergents revealed its potential for commercialization and application in bioremediation.
doi_str_mv 10.1016/j.ijbiomac.2013.08.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516742040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813013004546</els_id><sourcerecordid>1516742040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-67698e50003a74df594af29982afbdd1f8ee40526ff14a4b25d10cea93e9afb73</originalsourceid><addsrcrecordid>eNqFkU9v3CAQxVHVqtmk_QoRx17szNgYw61VlP6RIvXSnhHGg8TKC1uwI_Xbl91Nes0J9PQb3vAeY7cILQLKu30b9lNIB-vaDrBvQbXQwxu2QzXqBgD6t2wHKLBR2MMVuy5lX1U5oHrPrrpeazEqtWPhwXtyK0-eb9Gl-ERxDSnahTubpxR5SVt2VHi9Vr-yZW_dauPKjznNmzvB3MaZh7VwezwuwdmzFs58pgPN4ax8YO-8XQp9fD5v2O-vD7_uvzePP7_9uP_y2DgBuDZylFrRcPqBHcXsBy2s77RWnfXTPKNXRAKGTnqPwoqpG2YER1b3pCsx9jfs0-XduuCfjcpqDqE4WhYbKW3F4IByFB0IeB0VEpXCTsuKygvqciolkzfHHA42_zUI5tSI2ZuXRsypEQPK1Ebq4O2zxzbVLP6PvVRQgc8XgGooT4GyKS5QdDW3XJsxcwqvefwD29uiFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461881296</pqid></control><display><type>article</type><title>Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jain, Rakeshkumar M. ; Mody, Kalpana ; Joshi, Nidhi ; Mishra, Avinash ; Jha, Bhavanath</creator><creatorcontrib>Jain, Rakeshkumar M. ; Mody, Kalpana ; Joshi, Nidhi ; Mishra, Avinash ; Jha, Bhavanath</creatorcontrib><description>The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhibited significantly higher viscosity and maximum reduction in surface tension as compared to other substrates. Among several carbon substrates tested, production of biosurfactant was found to be the highest with corn powder (15.40±0.21g/l) as compared to others. The comparative chemical characterization of purified biosurfactant was done using advance analytical tools such as NMR, FT-IR, SEM, GPC, MALDI TOF–TOF MS, GC–MS, TG and DSC. Analyses indicated variation in the functional groups, monosaccharide composition, molecular mass, thermostability. Higher yield with cheaper raw materials, noteworthy stress tolerance of CP-biosurfactant toward pH and salt as well as compatibility with chemical surfactants and detergents revealed its potential for commercialization and application in bioremediation.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2013.08.030</identifier><identifier>PMID: 23994788</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alkaliphilic bacteria ; Biodegradation, Environmental ; Biological Products - chemistry ; Biological Products - metabolism ; Bioremediation ; Biosurfactant ; Carbon - metabolism ; Cotton Fiber ; Industrial Waste ; Klebsiella ; Klebsiella - metabolism ; Lubricants - isolation &amp; purification ; Lubricants - metabolism ; Molecular Weight ; Oils - isolation &amp; purification ; Oils - metabolism ; Solanum tuberosum ; Surface Tension ; Surface-Active Agents - metabolism ; Viscosity</subject><ispartof>International journal of biological macromolecules, 2013-11, Vol.62 (1-2), p.52-58</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-67698e50003a74df594af29982afbdd1f8ee40526ff14a4b25d10cea93e9afb73</citedby><cites>FETCH-LOGICAL-c401t-67698e50003a74df594af29982afbdd1f8ee40526ff14a4b25d10cea93e9afb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2013.08.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23994788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Rakeshkumar M.</creatorcontrib><creatorcontrib>Mody, Kalpana</creatorcontrib><creatorcontrib>Joshi, Nidhi</creatorcontrib><creatorcontrib>Mishra, Avinash</creatorcontrib><creatorcontrib>Jha, Bhavanath</creatorcontrib><title>Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhibited significantly higher viscosity and maximum reduction in surface tension as compared to other substrates. Among several carbon substrates tested, production of biosurfactant was found to be the highest with corn powder (15.40±0.21g/l) as compared to others. The comparative chemical characterization of purified biosurfactant was done using advance analytical tools such as NMR, FT-IR, SEM, GPC, MALDI TOF–TOF MS, GC–MS, TG and DSC. Analyses indicated variation in the functional groups, monosaccharide composition, molecular mass, thermostability. Higher yield with cheaper raw materials, noteworthy stress tolerance of CP-biosurfactant toward pH and salt as well as compatibility with chemical surfactants and detergents revealed its potential for commercialization and application in bioremediation.</description><subject>Alkaliphilic bacteria</subject><subject>Biodegradation, Environmental</subject><subject>Biological Products - chemistry</subject><subject>Biological Products - metabolism</subject><subject>Bioremediation</subject><subject>Biosurfactant</subject><subject>Carbon - metabolism</subject><subject>Cotton Fiber</subject><subject>Industrial Waste</subject><subject>Klebsiella</subject><subject>Klebsiella - metabolism</subject><subject>Lubricants - isolation &amp; purification</subject><subject>Lubricants - metabolism</subject><subject>Molecular Weight</subject><subject>Oils - isolation &amp; purification</subject><subject>Oils - metabolism</subject><subject>Solanum tuberosum</subject><subject>Surface Tension</subject><subject>Surface-Active Agents - metabolism</subject><subject>Viscosity</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v3CAQxVHVqtmk_QoRx17szNgYw61VlP6RIvXSnhHGg8TKC1uwI_Xbl91Nes0J9PQb3vAeY7cILQLKu30b9lNIB-vaDrBvQbXQwxu2QzXqBgD6t2wHKLBR2MMVuy5lX1U5oHrPrrpeazEqtWPhwXtyK0-eb9Gl-ERxDSnahTubpxR5SVt2VHi9Vr-yZW_dauPKjznNmzvB3MaZh7VwezwuwdmzFs58pgPN4ax8YO-8XQp9fD5v2O-vD7_uvzePP7_9uP_y2DgBuDZylFrRcPqBHcXsBy2s77RWnfXTPKNXRAKGTnqPwoqpG2YER1b3pCsx9jfs0-XduuCfjcpqDqE4WhYbKW3F4IByFB0IeB0VEpXCTsuKygvqciolkzfHHA42_zUI5tSI2ZuXRsypEQPK1Ebq4O2zxzbVLP6PvVRQgc8XgGooT4GyKS5QdDW3XJsxcwqvefwD29uiFQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Jain, Rakeshkumar M.</creator><creator>Mody, Kalpana</creator><creator>Joshi, Nidhi</creator><creator>Mishra, Avinash</creator><creator>Jha, Bhavanath</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TV</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131101</creationdate><title>Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation</title><author>Jain, Rakeshkumar M. ; Mody, Kalpana ; Joshi, Nidhi ; Mishra, Avinash ; Jha, Bhavanath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-67698e50003a74df594af29982afbdd1f8ee40526ff14a4b25d10cea93e9afb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alkaliphilic bacteria</topic><topic>Biodegradation, Environmental</topic><topic>Biological Products - chemistry</topic><topic>Biological Products - metabolism</topic><topic>Bioremediation</topic><topic>Biosurfactant</topic><topic>Carbon - metabolism</topic><topic>Cotton Fiber</topic><topic>Industrial Waste</topic><topic>Klebsiella</topic><topic>Klebsiella - metabolism</topic><topic>Lubricants - isolation &amp; purification</topic><topic>Lubricants - metabolism</topic><topic>Molecular Weight</topic><topic>Oils - isolation &amp; purification</topic><topic>Oils - metabolism</topic><topic>Solanum tuberosum</topic><topic>Surface Tension</topic><topic>Surface-Active Agents - metabolism</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Rakeshkumar M.</creatorcontrib><creatorcontrib>Mody, Kalpana</creatorcontrib><creatorcontrib>Joshi, Nidhi</creatorcontrib><creatorcontrib>Mishra, Avinash</creatorcontrib><creatorcontrib>Jha, Bhavanath</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Rakeshkumar M.</au><au>Mody, Kalpana</au><au>Joshi, Nidhi</au><au>Mishra, Avinash</au><au>Jha, Bhavanath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>62</volume><issue>1-2</issue><spage>52</spage><epage>58</epage><pages>52-58</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhibited significantly higher viscosity and maximum reduction in surface tension as compared to other substrates. Among several carbon substrates tested, production of biosurfactant was found to be the highest with corn powder (15.40±0.21g/l) as compared to others. The comparative chemical characterization of purified biosurfactant was done using advance analytical tools such as NMR, FT-IR, SEM, GPC, MALDI TOF–TOF MS, GC–MS, TG and DSC. Analyses indicated variation in the functional groups, monosaccharide composition, molecular mass, thermostability. Higher yield with cheaper raw materials, noteworthy stress tolerance of CP-biosurfactant toward pH and salt as well as compatibility with chemical surfactants and detergents revealed its potential for commercialization and application in bioremediation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23994788</pmid><doi>10.1016/j.ijbiomac.2013.08.030</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2013-11, Vol.62 (1-2), p.52-58
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_1516742040
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Alkaliphilic bacteria
Biodegradation, Environmental
Biological Products - chemistry
Biological Products - metabolism
Bioremediation
Biosurfactant
Carbon - metabolism
Cotton Fiber
Industrial Waste
Klebsiella
Klebsiella - metabolism
Lubricants - isolation & purification
Lubricants - metabolism
Molecular Weight
Oils - isolation & purification
Oils - metabolism
Solanum tuberosum
Surface Tension
Surface-Active Agents - metabolism
Viscosity
title Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20unconventional%20carbon%20sources%20on%20biosurfactant%20production%20and%20its%20application%20in%20bioremediation&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Jain,%20Rakeshkumar%20M.&rft.date=2013-11-01&rft.volume=62&rft.issue=1-2&rft.spage=52&rft.epage=58&rft.pages=52-58&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2013.08.030&rft_dat=%3Cproquest_cross%3E1516742040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461881296&rft_id=info:pmid/23994788&rft_els_id=S0141813013004546&rfr_iscdi=true