An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice

Decisions emerge from the concerted activity of neuronal populations distributed across brain circuits. However, the analytical tools best suited to decode decision signals from neuronal populations remain unknown. Here we show that knowledge of correlated variability between pairs of cortical neuro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2013-12, Vol.80 (6), p.1532-1543
Hauptverfasser: Carnevale, Federico, de Lafuente, Victor, Romo, Ranulfo, Parga, Néstor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1543
container_issue 6
container_start_page 1532
container_title Neuron (Cambridge, Mass.)
container_volume 80
creator Carnevale, Federico
de Lafuente, Victor
Romo, Ranulfo
Parga, Néstor
description Decisions emerge from the concerted activity of neuronal populations distributed across brain circuits. However, the analytical tools best suited to decode decision signals from neuronal populations remain unknown. Here we show that knowledge of correlated variability between pairs of cortical neurons allows perfect decoding of decisions from population firing rates. We recorded pairs of neurons from secondary somatosensory (S2) and premotor (PM) cortices while monkeys reported the presence or absence of a tactile stimulus. We found that while populations of S2 and sensory-like PM neurons are only partially correlated with behavior, those PM neurons active during a delay period preceding the motor report predict unequivocally the animal’s decision report. Thus, a population rate code that optimally reveals a subject’s perceptual decisions can be implemented just by knowing the correlations of PM neurons representing decision variables. •Populations of premotor cortex neurons predict unequivocally behavioral choices•Choice probability is determined by full and choice-conditioned correlations•Decisions can decoded from linear combinations of neuronal activity•We developed and tested tools to estimate choice probability from correlations Behavioral decisions can be predicted from the activity of neurons many seconds before overt actions. Carnevale et al. develop analytical tools that combine populations of correlated neurons to unequivocally decode decisions from premotor activity in the primate cortex.
doi_str_mv 10.1016/j.neuron.2013.09.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516741689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627313008544</els_id><sourcerecordid>3395143781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-2f870eecc7ca2a65701df5d59444d9cf4fe42d84d3c2946b80bda218af2c80583</originalsourceid><addsrcrecordid>eNqFkc9uFSEYxYnR2Gv1DYwhceNmpsDAMGxMbq71T9KkTbRuCQPfWCZzhyswTe_O1_D1fJJyc6sLF7oBQn7nfHAOQi8pqSmh7dlYz7DEMNeM0KYmqiaseYRWlChZcarUY7QinWqrlsnmBD1LaSSEcqHoU3TCOGu7Aq3Q3XrGl7vst2bC78D65MOMr8JumUw-HDfBAc43JuO1tWGZc8JDiOU6RigIOPzVRG96P_m8x9ez2fb-2xKWNO3xVQTnbVEY_HnpR7D514-fCW9ugrfwHD0ZzJTgxcN-iq7fn3_ZfKwuLj982qwvKisalSs2dJIAWCutYaYVklA3CCcU59wpO_ABOHMdd41lird9R3pnGO3MwGxHRNecojdH310M3xdIWW99sjBNZobyTE0FbSWnbaf-j3JFpCBlLejrv9AxLHEuHymGgkpGGyoLxY-UjSGlCIPexZJ03GtK9KFEPepjifpQoiZKlxKL7NWD-dJvwf0R_W6tAG-PAJTgbj1EnayH2Za4Y0lZu-D_PeEej7GxBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551721317</pqid></control><display><type>article</type><title>An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Carnevale, Federico ; de Lafuente, Victor ; Romo, Ranulfo ; Parga, Néstor</creator><creatorcontrib>Carnevale, Federico ; de Lafuente, Victor ; Romo, Ranulfo ; Parga, Néstor</creatorcontrib><description>Decisions emerge from the concerted activity of neuronal populations distributed across brain circuits. However, the analytical tools best suited to decode decision signals from neuronal populations remain unknown. Here we show that knowledge of correlated variability between pairs of cortical neurons allows perfect decoding of decisions from population firing rates. We recorded pairs of neurons from secondary somatosensory (S2) and premotor (PM) cortices while monkeys reported the presence or absence of a tactile stimulus. We found that while populations of S2 and sensory-like PM neurons are only partially correlated with behavior, those PM neurons active during a delay period preceding the motor report predict unequivocally the animal’s decision report. Thus, a population rate code that optimally reveals a subject’s perceptual decisions can be implemented just by knowing the correlations of PM neurons representing decision variables. •Populations of premotor cortex neurons predict unequivocally behavioral choices•Choice probability is determined by full and choice-conditioned correlations•Decisions can decoded from linear combinations of neuronal activity•We developed and tested tools to estimate choice probability from correlations Behavioral decisions can be predicted from the activity of neurons many seconds before overt actions. Carnevale et al. develop analytical tools that combine populations of correlated neurons to unequivocally decode decisions from premotor activity in the primate cortex.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2013.09.023</identifier><identifier>PMID: 24268419</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Behavior ; Decision making ; Decision Making - physiology ; Macaca mulatta ; Models, Neurological ; Motor Cortex - physiology ; Neurons ; Neurons - physiology ; Noise ; Population ; Psychomotor Performance - physiology ; Somatosensory Cortex - physiology ; Touch Perception - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2013-12, Vol.80 (6), p.1532-1543</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 18, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-2f870eecc7ca2a65701df5d59444d9cf4fe42d84d3c2946b80bda218af2c80583</citedby><cites>FETCH-LOGICAL-c539t-2f870eecc7ca2a65701df5d59444d9cf4fe42d84d3c2946b80bda218af2c80583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2013.09.023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24268419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carnevale, Federico</creatorcontrib><creatorcontrib>de Lafuente, Victor</creatorcontrib><creatorcontrib>Romo, Ranulfo</creatorcontrib><creatorcontrib>Parga, Néstor</creatorcontrib><title>An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Decisions emerge from the concerted activity of neuronal populations distributed across brain circuits. However, the analytical tools best suited to decode decision signals from neuronal populations remain unknown. Here we show that knowledge of correlated variability between pairs of cortical neurons allows perfect decoding of decisions from population firing rates. We recorded pairs of neurons from secondary somatosensory (S2) and premotor (PM) cortices while monkeys reported the presence or absence of a tactile stimulus. We found that while populations of S2 and sensory-like PM neurons are only partially correlated with behavior, those PM neurons active during a delay period preceding the motor report predict unequivocally the animal’s decision report. Thus, a population rate code that optimally reveals a subject’s perceptual decisions can be implemented just by knowing the correlations of PM neurons representing decision variables. •Populations of premotor cortex neurons predict unequivocally behavioral choices•Choice probability is determined by full and choice-conditioned correlations•Decisions can decoded from linear combinations of neuronal activity•We developed and tested tools to estimate choice probability from correlations Behavioral decisions can be predicted from the activity of neurons many seconds before overt actions. Carnevale et al. develop analytical tools that combine populations of correlated neurons to unequivocally decode decisions from premotor activity in the primate cortex.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Behavior</subject><subject>Decision making</subject><subject>Decision Making - physiology</subject><subject>Macaca mulatta</subject><subject>Models, Neurological</subject><subject>Motor Cortex - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Noise</subject><subject>Population</subject><subject>Psychomotor Performance - physiology</subject><subject>Somatosensory Cortex - physiology</subject><subject>Touch Perception - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9uFSEYxYnR2Gv1DYwhceNmpsDAMGxMbq71T9KkTbRuCQPfWCZzhyswTe_O1_D1fJJyc6sLF7oBQn7nfHAOQi8pqSmh7dlYz7DEMNeM0KYmqiaseYRWlChZcarUY7QinWqrlsnmBD1LaSSEcqHoU3TCOGu7Aq3Q3XrGl7vst2bC78D65MOMr8JumUw-HDfBAc43JuO1tWGZc8JDiOU6RigIOPzVRG96P_m8x9ez2fb-2xKWNO3xVQTnbVEY_HnpR7D514-fCW9ugrfwHD0ZzJTgxcN-iq7fn3_ZfKwuLj982qwvKisalSs2dJIAWCutYaYVklA3CCcU59wpO_ABOHMdd41lird9R3pnGO3MwGxHRNecojdH310M3xdIWW99sjBNZobyTE0FbSWnbaf-j3JFpCBlLejrv9AxLHEuHymGgkpGGyoLxY-UjSGlCIPexZJ03GtK9KFEPepjifpQoiZKlxKL7NWD-dJvwf0R_W6tAG-PAJTgbj1EnayH2Za4Y0lZu-D_PeEej7GxBg</recordid><startdate>20131218</startdate><enddate>20131218</enddate><creator>Carnevale, Federico</creator><creator>de Lafuente, Victor</creator><creator>Romo, Ranulfo</creator><creator>Parga, Néstor</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20131218</creationdate><title>An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice</title><author>Carnevale, Federico ; de Lafuente, Victor ; Romo, Ranulfo ; Parga, Néstor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-2f870eecc7ca2a65701df5d59444d9cf4fe42d84d3c2946b80bda218af2c80583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Behavior</topic><topic>Decision making</topic><topic>Decision Making - physiology</topic><topic>Macaca mulatta</topic><topic>Models, Neurological</topic><topic>Motor Cortex - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Noise</topic><topic>Population</topic><topic>Psychomotor Performance - physiology</topic><topic>Somatosensory Cortex - physiology</topic><topic>Touch Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnevale, Federico</creatorcontrib><creatorcontrib>de Lafuente, Victor</creatorcontrib><creatorcontrib>Romo, Ranulfo</creatorcontrib><creatorcontrib>Parga, Néstor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnevale, Federico</au><au>de Lafuente, Victor</au><au>Romo, Ranulfo</au><au>Parga, Néstor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-12-18</date><risdate>2013</risdate><volume>80</volume><issue>6</issue><spage>1532</spage><epage>1543</epage><pages>1532-1543</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Decisions emerge from the concerted activity of neuronal populations distributed across brain circuits. However, the analytical tools best suited to decode decision signals from neuronal populations remain unknown. Here we show that knowledge of correlated variability between pairs of cortical neurons allows perfect decoding of decisions from population firing rates. We recorded pairs of neurons from secondary somatosensory (S2) and premotor (PM) cortices while monkeys reported the presence or absence of a tactile stimulus. We found that while populations of S2 and sensory-like PM neurons are only partially correlated with behavior, those PM neurons active during a delay period preceding the motor report predict unequivocally the animal’s decision report. Thus, a population rate code that optimally reveals a subject’s perceptual decisions can be implemented just by knowing the correlations of PM neurons representing decision variables. •Populations of premotor cortex neurons predict unequivocally behavioral choices•Choice probability is determined by full and choice-conditioned correlations•Decisions can decoded from linear combinations of neuronal activity•We developed and tested tools to estimate choice probability from correlations Behavioral decisions can be predicted from the activity of neurons many seconds before overt actions. Carnevale et al. develop analytical tools that combine populations of correlated neurons to unequivocally decode decisions from premotor activity in the primate cortex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24268419</pmid><doi>10.1016/j.neuron.2013.09.023</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2013-12, Vol.80 (6), p.1532-1543
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1516741689
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Action Potentials - physiology
Animals
Behavior
Decision making
Decision Making - physiology
Macaca mulatta
Models, Neurological
Motor Cortex - physiology
Neurons
Neurons - physiology
Noise
Population
Psychomotor Performance - physiology
Somatosensory Cortex - physiology
Touch Perception - physiology
title An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Decision%20Population%20Code%20that%20Accounts%20for%20Correlated%20Variability%20Unambiguously%20Predicts%20a%20Subject%E2%80%99s%20Choice&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Carnevale,%20Federico&rft.date=2013-12-18&rft.volume=80&rft.issue=6&rft.spage=1532&rft.epage=1543&rft.pages=1532-1543&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2013.09.023&rft_dat=%3Cproquest_cross%3E3395143781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551721317&rft_id=info:pmid/24268419&rft_els_id=S0896627313008544&rfr_iscdi=true