Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae
We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystal...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2014-04, Vol.98 (7), p.2991-3001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3001 |
---|---|
container_issue | 7 |
container_start_page | 2991 |
container_title | Applied microbiology and biotechnology |
container_volume | 98 |
creator | Voutilainen, Sanni P Nurmi-Rantala, Susanna Penttilä, Merja Koivula, Anu |
description | We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C. |
doi_str_mv | 10.1007/s00253-013-5177-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516738685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370655119</galeid><sourcerecordid>A370655119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</originalsourceid><addsrcrecordid>eNqNks1q3DAURk1paSZpH6Cb1tBNunB6JVmWvAwhTQKBQidZC1m-mlGwralkh87bV8bpz5RSihYSl_Nd9MHJsjcEzgiA-BgBKGcFEFZwIkRBn2UrUjJaQEXK59kKiOCF4LU8yo5jfAAgVFbVy-yIslqUTJBVdnc5bNyAGNywyc3W9ell8nGLofdx1E2H-dW1yA12nW-c3-7b4DsdMeZuyNfamK0Ovt-bNDAY8NFFp_FV9sLqLuLrp_sku_90eXdxXdx-vrq5OL8tDK_EWHBKsDSMlhZaLptUpZVNXTNb29ZawzUHgtpgYymFVggmUWrbABhWm4YAO8lOl7274L9OGEfVuzh_VQ_op6gIJ1VKVZL_D0opLYkkCX3_B_rgpzCkIjM1g1JWv6iN7lC5wfoxaDMvVedMQMUTWifq7C9UOi32zvgBrUvzg8CHg0BiRvw2bvQUo7pZfzlkycKa4GMMaNUuuF6HvSKgZkHUIohKgqhZEEVT5u1Tuanpsf2Z-GFEAugCxN3sBIbf2v9j67slZLVXehNcVPdrCqQEgEpSIdl3T_fMEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511512886</pqid></control><display><type>article</type><title>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Voutilainen, Sanni P ; Nurmi-Rantala, Susanna ; Penttilä, Merja ; Koivula, Anu</creator><creatorcontrib>Voutilainen, Sanni P ; Nurmi-Rantala, Susanna ; Penttilä, Merja ; Koivula, Anu</creatorcontrib><description>We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5177-2</identifier><identifier>PMID: 23974371</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; biomass ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Brewer's yeast ; carbohydrate binding ; Carbohydrates ; Cellulase ; Cellulose ; Cellulose - metabolism ; cellulose 1,4-beta-cellobiosidase ; Cellulose 1,4-beta-Cellobiosidase - chemistry ; Cellulose 1,4-beta-Cellobiosidase - genetics ; Cellulose 1,4-beta-Cellobiosidase - metabolism ; Chemical engineering ; Clostridium thermocellum ; Clostridium thermocellum - enzymology ; Clostridium thermocellum - genetics ; Deconstruction ; Engineering ; Enzyme Stability ; Enzymes ; Eurotiales - enzymology ; Eurotiales - genetics ; feedstocks ; Fungi ; High temperature ; Hydrolysis ; Hypocrea jecorina ; Life Sciences ; Lignocellulose ; Metabolic Engineering ; Microbial Genetics and Genomics ; Microbiology ; Molecular Sequence Data ; Peptides ; Physiological aspects ; Protein Binding ; Protein expression ; Protein Stability ; Proteins ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Sequence Analysis, DNA ; Studies ; Talaromyces ; Temperature ; thermal stability ; thermophilic fungi ; Trichoderma - enzymology ; Trichoderma - genetics ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2014-04, Vol.98 (7), p.2991-3001</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</citedby><cites>FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-013-5177-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-013-5177-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23974371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voutilainen, Sanni P</creatorcontrib><creatorcontrib>Nurmi-Rantala, Susanna</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><creatorcontrib>Koivula, Anu</creatorcontrib><title>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.</description><subject>Analysis</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>carbohydrate binding</subject><subject>Carbohydrates</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>cellulose 1,4-beta-cellobiosidase</subject><subject>Cellulose 1,4-beta-Cellobiosidase - chemistry</subject><subject>Cellulose 1,4-beta-Cellobiosidase - genetics</subject><subject>Cellulose 1,4-beta-Cellobiosidase - metabolism</subject><subject>Chemical engineering</subject><subject>Clostridium thermocellum</subject><subject>Clostridium thermocellum - enzymology</subject><subject>Clostridium thermocellum - genetics</subject><subject>Deconstruction</subject><subject>Engineering</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Eurotiales - enzymology</subject><subject>Eurotiales - genetics</subject><subject>feedstocks</subject><subject>Fungi</subject><subject>High temperature</subject><subject>Hydrolysis</subject><subject>Hypocrea jecorina</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Metabolic Engineering</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein expression</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Studies</subject><subject>Talaromyces</subject><subject>Temperature</subject><subject>thermal stability</subject><subject>thermophilic fungi</subject><subject>Trichoderma - enzymology</subject><subject>Trichoderma - genetics</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1q3DAURk1paSZpH6Cb1tBNunB6JVmWvAwhTQKBQidZC1m-mlGwralkh87bV8bpz5RSihYSl_Nd9MHJsjcEzgiA-BgBKGcFEFZwIkRBn2UrUjJaQEXK59kKiOCF4LU8yo5jfAAgVFbVy-yIslqUTJBVdnc5bNyAGNywyc3W9ell8nGLofdx1E2H-dW1yA12nW-c3-7b4DsdMeZuyNfamK0Ovt-bNDAY8NFFp_FV9sLqLuLrp_sku_90eXdxXdx-vrq5OL8tDK_EWHBKsDSMlhZaLptUpZVNXTNb29ZawzUHgtpgYymFVggmUWrbABhWm4YAO8lOl7274L9OGEfVuzh_VQ_op6gIJ1VKVZL_D0opLYkkCX3_B_rgpzCkIjM1g1JWv6iN7lC5wfoxaDMvVedMQMUTWifq7C9UOi32zvgBrUvzg8CHg0BiRvw2bvQUo7pZfzlkycKa4GMMaNUuuF6HvSKgZkHUIohKgqhZEEVT5u1Tuanpsf2Z-GFEAugCxN3sBIbf2v9j67slZLVXehNcVPdrCqQEgEpSIdl3T_fMEw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Voutilainen, Sanni P</creator><creator>Nurmi-Rantala, Susanna</creator><creator>Penttilä, Merja</creator><creator>Koivula, Anu</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140401</creationdate><title>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</title><author>Voutilainen, Sanni P ; Nurmi-Rantala, Susanna ; Penttilä, Merja ; Koivula, Anu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>carbohydrate binding</topic><topic>Carbohydrates</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>cellulose 1,4-beta-cellobiosidase</topic><topic>Cellulose 1,4-beta-Cellobiosidase - chemistry</topic><topic>Cellulose 1,4-beta-Cellobiosidase - genetics</topic><topic>Cellulose 1,4-beta-Cellobiosidase - metabolism</topic><topic>Chemical engineering</topic><topic>Clostridium thermocellum</topic><topic>Clostridium thermocellum - enzymology</topic><topic>Clostridium thermocellum - genetics</topic><topic>Deconstruction</topic><topic>Engineering</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Eurotiales - enzymology</topic><topic>Eurotiales - genetics</topic><topic>feedstocks</topic><topic>Fungi</topic><topic>High temperature</topic><topic>Hydrolysis</topic><topic>Hypocrea jecorina</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Metabolic Engineering</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein expression</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Studies</topic><topic>Talaromyces</topic><topic>Temperature</topic><topic>thermal stability</topic><topic>thermophilic fungi</topic><topic>Trichoderma - enzymology</topic><topic>Trichoderma - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voutilainen, Sanni P</creatorcontrib><creatorcontrib>Nurmi-Rantala, Susanna</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><creatorcontrib>Koivula, Anu</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voutilainen, Sanni P</au><au>Nurmi-Rantala, Susanna</au><au>Penttilä, Merja</au><au>Koivula, Anu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>98</volume><issue>7</issue><spage>2991</spage><epage>3001</epage><pages>2991-3001</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23974371</pmid><doi>10.1007/s00253-013-5177-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2014-04, Vol.98 (7), p.2991-3001 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1516738685 |
source | MEDLINE; SpringerLink Journals |
subjects | Analysis biomass Biomedical and Life Sciences Biosynthesis Biotechnologically Relevant Enzymes and Proteins Biotechnology Brewer's yeast carbohydrate binding Carbohydrates Cellulase Cellulose Cellulose - metabolism cellulose 1,4-beta-cellobiosidase Cellulose 1,4-beta-Cellobiosidase - chemistry Cellulose 1,4-beta-Cellobiosidase - genetics Cellulose 1,4-beta-Cellobiosidase - metabolism Chemical engineering Clostridium thermocellum Clostridium thermocellum - enzymology Clostridium thermocellum - genetics Deconstruction Engineering Enzyme Stability Enzymes Eurotiales - enzymology Eurotiales - genetics feedstocks Fungi High temperature Hydrolysis Hypocrea jecorina Life Sciences Lignocellulose Metabolic Engineering Microbial Genetics and Genomics Microbiology Molecular Sequence Data Peptides Physiological aspects Protein Binding Protein expression Protein Stability Proteins Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Sequence Analysis, DNA Studies Talaromyces Temperature thermal stability thermophilic fungi Trichoderma - enzymology Trichoderma - genetics Yeast |
title | Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20chimeric%20thermostable%20GH7%20cellobiohydrolases%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Voutilainen,%20Sanni%20P&rft.date=2014-04-01&rft.volume=98&rft.issue=7&rft.spage=2991&rft.epage=3001&rft.pages=2991-3001&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5177-2&rft_dat=%3Cgale_proqu%3EA370655119%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511512886&rft_id=info:pmid/23974371&rft_galeid=A370655119&rfr_iscdi=true |