Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae

We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2014-04, Vol.98 (7), p.2991-3001
Hauptverfasser: Voutilainen, Sanni P, Nurmi-Rantala, Susanna, Penttilä, Merja, Koivula, Anu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3001
container_issue 7
container_start_page 2991
container_title Applied microbiology and biotechnology
container_volume 98
creator Voutilainen, Sanni P
Nurmi-Rantala, Susanna
Penttilä, Merja
Koivula, Anu
description We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.
doi_str_mv 10.1007/s00253-013-5177-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516738685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370655119</galeid><sourcerecordid>A370655119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</originalsourceid><addsrcrecordid>eNqNks1q3DAURk1paSZpH6Cb1tBNunB6JVmWvAwhTQKBQidZC1m-mlGwralkh87bV8bpz5RSihYSl_Nd9MHJsjcEzgiA-BgBKGcFEFZwIkRBn2UrUjJaQEXK59kKiOCF4LU8yo5jfAAgVFbVy-yIslqUTJBVdnc5bNyAGNywyc3W9ell8nGLofdx1E2H-dW1yA12nW-c3-7b4DsdMeZuyNfamK0Ovt-bNDAY8NFFp_FV9sLqLuLrp_sku_90eXdxXdx-vrq5OL8tDK_EWHBKsDSMlhZaLptUpZVNXTNb29ZawzUHgtpgYymFVggmUWrbABhWm4YAO8lOl7274L9OGEfVuzh_VQ_op6gIJ1VKVZL_D0opLYkkCX3_B_rgpzCkIjM1g1JWv6iN7lC5wfoxaDMvVedMQMUTWifq7C9UOi32zvgBrUvzg8CHg0BiRvw2bvQUo7pZfzlkycKa4GMMaNUuuF6HvSKgZkHUIohKgqhZEEVT5u1Tuanpsf2Z-GFEAugCxN3sBIbf2v9j67slZLVXehNcVPdrCqQEgEpSIdl3T_fMEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511512886</pqid></control><display><type>article</type><title>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Voutilainen, Sanni P ; Nurmi-Rantala, Susanna ; Penttilä, Merja ; Koivula, Anu</creator><creatorcontrib>Voutilainen, Sanni P ; Nurmi-Rantala, Susanna ; Penttilä, Merja ; Koivula, Anu</creatorcontrib><description>We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5177-2</identifier><identifier>PMID: 23974371</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; biomass ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Brewer's yeast ; carbohydrate binding ; Carbohydrates ; Cellulase ; Cellulose ; Cellulose - metabolism ; cellulose 1,4-beta-cellobiosidase ; Cellulose 1,4-beta-Cellobiosidase - chemistry ; Cellulose 1,4-beta-Cellobiosidase - genetics ; Cellulose 1,4-beta-Cellobiosidase - metabolism ; Chemical engineering ; Clostridium thermocellum ; Clostridium thermocellum - enzymology ; Clostridium thermocellum - genetics ; Deconstruction ; Engineering ; Enzyme Stability ; Enzymes ; Eurotiales - enzymology ; Eurotiales - genetics ; feedstocks ; Fungi ; High temperature ; Hydrolysis ; Hypocrea jecorina ; Life Sciences ; Lignocellulose ; Metabolic Engineering ; Microbial Genetics and Genomics ; Microbiology ; Molecular Sequence Data ; Peptides ; Physiological aspects ; Protein Binding ; Protein expression ; Protein Stability ; Proteins ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Sequence Analysis, DNA ; Studies ; Talaromyces ; Temperature ; thermal stability ; thermophilic fungi ; Trichoderma - enzymology ; Trichoderma - genetics ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2014-04, Vol.98 (7), p.2991-3001</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</citedby><cites>FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-013-5177-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-013-5177-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23974371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voutilainen, Sanni P</creatorcontrib><creatorcontrib>Nurmi-Rantala, Susanna</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><creatorcontrib>Koivula, Anu</creatorcontrib><title>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.</description><subject>Analysis</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>carbohydrate binding</subject><subject>Carbohydrates</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>cellulose 1,4-beta-cellobiosidase</subject><subject>Cellulose 1,4-beta-Cellobiosidase - chemistry</subject><subject>Cellulose 1,4-beta-Cellobiosidase - genetics</subject><subject>Cellulose 1,4-beta-Cellobiosidase - metabolism</subject><subject>Chemical engineering</subject><subject>Clostridium thermocellum</subject><subject>Clostridium thermocellum - enzymology</subject><subject>Clostridium thermocellum - genetics</subject><subject>Deconstruction</subject><subject>Engineering</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Eurotiales - enzymology</subject><subject>Eurotiales - genetics</subject><subject>feedstocks</subject><subject>Fungi</subject><subject>High temperature</subject><subject>Hydrolysis</subject><subject>Hypocrea jecorina</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Metabolic Engineering</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein expression</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Studies</subject><subject>Talaromyces</subject><subject>Temperature</subject><subject>thermal stability</subject><subject>thermophilic fungi</subject><subject>Trichoderma - enzymology</subject><subject>Trichoderma - genetics</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks1q3DAURk1paSZpH6Cb1tBNunB6JVmWvAwhTQKBQidZC1m-mlGwralkh87bV8bpz5RSihYSl_Nd9MHJsjcEzgiA-BgBKGcFEFZwIkRBn2UrUjJaQEXK59kKiOCF4LU8yo5jfAAgVFbVy-yIslqUTJBVdnc5bNyAGNywyc3W9ell8nGLofdx1E2H-dW1yA12nW-c3-7b4DsdMeZuyNfamK0Ovt-bNDAY8NFFp_FV9sLqLuLrp_sku_90eXdxXdx-vrq5OL8tDK_EWHBKsDSMlhZaLptUpZVNXTNb29ZawzUHgtpgYymFVggmUWrbABhWm4YAO8lOl7274L9OGEfVuzh_VQ_op6gIJ1VKVZL_D0opLYkkCX3_B_rgpzCkIjM1g1JWv6iN7lC5wfoxaDMvVedMQMUTWifq7C9UOi32zvgBrUvzg8CHg0BiRvw2bvQUo7pZfzlkycKa4GMMaNUuuF6HvSKgZkHUIohKgqhZEEVT5u1Tuanpsf2Z-GFEAugCxN3sBIbf2v9j67slZLVXehNcVPdrCqQEgEpSIdl3T_fMEw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Voutilainen, Sanni P</creator><creator>Nurmi-Rantala, Susanna</creator><creator>Penttilä, Merja</creator><creator>Koivula, Anu</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140401</creationdate><title>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</title><author>Voutilainen, Sanni P ; Nurmi-Rantala, Susanna ; Penttilä, Merja ; Koivula, Anu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-521e4c324f0d58b253d8b993f9fdffc5a501eacebf220d7738e8afb00c39cb103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>carbohydrate binding</topic><topic>Carbohydrates</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>cellulose 1,4-beta-cellobiosidase</topic><topic>Cellulose 1,4-beta-Cellobiosidase - chemistry</topic><topic>Cellulose 1,4-beta-Cellobiosidase - genetics</topic><topic>Cellulose 1,4-beta-Cellobiosidase - metabolism</topic><topic>Chemical engineering</topic><topic>Clostridium thermocellum</topic><topic>Clostridium thermocellum - enzymology</topic><topic>Clostridium thermocellum - genetics</topic><topic>Deconstruction</topic><topic>Engineering</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Eurotiales - enzymology</topic><topic>Eurotiales - genetics</topic><topic>feedstocks</topic><topic>Fungi</topic><topic>High temperature</topic><topic>Hydrolysis</topic><topic>Hypocrea jecorina</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Metabolic Engineering</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein expression</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Studies</topic><topic>Talaromyces</topic><topic>Temperature</topic><topic>thermal stability</topic><topic>thermophilic fungi</topic><topic>Trichoderma - enzymology</topic><topic>Trichoderma - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voutilainen, Sanni P</creatorcontrib><creatorcontrib>Nurmi-Rantala, Susanna</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><creatorcontrib>Koivula, Anu</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voutilainen, Sanni P</au><au>Nurmi-Rantala, Susanna</au><au>Penttilä, Merja</au><au>Koivula, Anu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>98</volume><issue>7</issue><spage>2991</spage><epage>3001</epage><pages>2991-3001</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T ₘ) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23974371</pmid><doi>10.1007/s00253-013-5177-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2014-04, Vol.98 (7), p.2991-3001
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1516738685
source MEDLINE; SpringerLink Journals
subjects Analysis
biomass
Biomedical and Life Sciences
Biosynthesis
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Brewer's yeast
carbohydrate binding
Carbohydrates
Cellulase
Cellulose
Cellulose - metabolism
cellulose 1,4-beta-cellobiosidase
Cellulose 1,4-beta-Cellobiosidase - chemistry
Cellulose 1,4-beta-Cellobiosidase - genetics
Cellulose 1,4-beta-Cellobiosidase - metabolism
Chemical engineering
Clostridium thermocellum
Clostridium thermocellum - enzymology
Clostridium thermocellum - genetics
Deconstruction
Engineering
Enzyme Stability
Enzymes
Eurotiales - enzymology
Eurotiales - genetics
feedstocks
Fungi
High temperature
Hydrolysis
Hypocrea jecorina
Life Sciences
Lignocellulose
Metabolic Engineering
Microbial Genetics and Genomics
Microbiology
Molecular Sequence Data
Peptides
Physiological aspects
Protein Binding
Protein expression
Protein Stability
Proteins
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Sequence Analysis, DNA
Studies
Talaromyces
Temperature
thermal stability
thermophilic fungi
Trichoderma - enzymology
Trichoderma - genetics
Yeast
title Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20chimeric%20thermostable%20GH7%20cellobiohydrolases%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Voutilainen,%20Sanni%20P&rft.date=2014-04-01&rft.volume=98&rft.issue=7&rft.spage=2991&rft.epage=3001&rft.pages=2991-3001&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5177-2&rft_dat=%3Cgale_proqu%3EA370655119%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511512886&rft_id=info:pmid/23974371&rft_galeid=A370655119&rfr_iscdi=true