Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance

As an important material for many practical and research applications, porous silicon has attracted interest for decades. Conventional preparations suffer from high mass loss because of their etching nature. A few alternative routes have been reported, including magnesiothermic reduction; however, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-04, Vol.5 (1), p.3605-3605, Article 3605
Hauptverfasser: Dai, Fang, Zai, Jiantao, Yi, Ran, Gordin, Mikhail L., Sohn, Hiesang, Chen, Shuru, Wang, Donghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3605
container_issue 1
container_start_page 3605
container_title Nature communications
container_volume 5
creator Dai, Fang
Zai, Jiantao
Yi, Ran
Gordin, Mikhail L.
Sohn, Hiesang
Chen, Shuru
Wang, Donghai
description As an important material for many practical and research applications, porous silicon has attracted interest for decades. Conventional preparations suffer from high mass loss because of their etching nature. A few alternative routes have been reported, including magnesiothermic reduction; however, pre-formed porous precursors are still necessary, leading to complicated syntheses. Here we demonstrate a bottom-up synthesis of mesoporous crystalline silicon materials with high surface area and tunable primary particle/pore size via a self-templating pore formation process. The chemical synthesis utilizes salt by-products as internal self-forming templates that can be easily removed without any etchants. The advantages of these materials, such as their nanosized crystalline primary particles and high surface areas, enable increased photocatalytic hydrogen evolution rate and extended working life. These also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries. Porous silicon is a technologically important material; however, many top-down etching fabrication processes result in significant material wastage. Here, the authors report a bottom-up self-templating fabrication route and assess the hydrogen evolution performance of the resulting material.
doi_str_mv 10.1038/ncomms4605
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1515644503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1515644503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-71c462a4b488f29de7c9c351578ceeffa1adce694b67bc6ca71dd0de859111f53</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTnQ3_gAJeCNKtWnTpr1U8QsG3uh1ydKTLaNNak4rDPzxZm7q0Nwk4X14TsJLyDGLL1mcFldWubZFnsfZDjlIYs4iJpJ0d-s8ImPERRxWWrKC830ySrhgIkQH5OPG9b1ro6GjuLT9HNAgdZrOzWxOcfBaKqDSg6QtoOucdwNS5ZfYy6YxFiiaxihnqbQ1hXfZDLI34RoUpkc6X9bezcCGyDXDV9KB18630io4IntaNgjjzX5IXu_vXm4fo8nzw9Pt9SRSPEv7SDDF80TyKS8KnZQ1CFWqNGOZKBSA1pLJWkFe8mkupipXUrC6jmsospIxprP0kJytvZ13bwNgX7UGFTSNtBD-U7HgyjnP4jSgp3_QhRu8Da9bUTwpRFmsqPM1pbxD9KCrzptW-mXF4mpVS_VbS4BPNsph2kL9g36XEICLNYAhsjPwWzP_6z4BmvCa2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514287983</pqid></control><display><type>article</type><title>Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance</title><source>Springer Nature OA/Free Journals</source><creator>Dai, Fang ; Zai, Jiantao ; Yi, Ran ; Gordin, Mikhail L. ; Sohn, Hiesang ; Chen, Shuru ; Wang, Donghai</creator><creatorcontrib>Dai, Fang ; Zai, Jiantao ; Yi, Ran ; Gordin, Mikhail L. ; Sohn, Hiesang ; Chen, Shuru ; Wang, Donghai</creatorcontrib><description>As an important material for many practical and research applications, porous silicon has attracted interest for decades. Conventional preparations suffer from high mass loss because of their etching nature. A few alternative routes have been reported, including magnesiothermic reduction; however, pre-formed porous precursors are still necessary, leading to complicated syntheses. Here we demonstrate a bottom-up synthesis of mesoporous crystalline silicon materials with high surface area and tunable primary particle/pore size via a self-templating pore formation process. The chemical synthesis utilizes salt by-products as internal self-forming templates that can be easily removed without any etchants. The advantages of these materials, such as their nanosized crystalline primary particles and high surface areas, enable increased photocatalytic hydrogen evolution rate and extended working life. These also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries. Porous silicon is a technologically important material; however, many top-down etching fabrication processes result in significant material wastage. Here, the authors report a bottom-up self-templating fabrication route and assess the hydrogen evolution performance of the resulting material.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4605</identifier><identifier>PMID: 24717723</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>121/143 ; 140/133 ; 140/146 ; 639/301/930/1032 ; Composite materials ; Humanities and Social Sciences ; Hydrogen ; multidisciplinary ; Photocatalysis ; Pore size ; Porous materials ; Salt ; Science ; Science (multidisciplinary) ; Silicon</subject><ispartof>Nature communications, 2014-04, Vol.5 (1), p.3605-3605, Article 3605</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-71c462a4b488f29de7c9c351578ceeffa1adce694b67bc6ca71dd0de859111f53</citedby><cites>FETCH-LOGICAL-c453t-71c462a4b488f29de7c9c351578ceeffa1adce694b67bc6ca71dd0de859111f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4605$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4605$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41129,42198,51585</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4605$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24717723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Fang</creatorcontrib><creatorcontrib>Zai, Jiantao</creatorcontrib><creatorcontrib>Yi, Ran</creatorcontrib><creatorcontrib>Gordin, Mikhail L.</creatorcontrib><creatorcontrib>Sohn, Hiesang</creatorcontrib><creatorcontrib>Chen, Shuru</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><title>Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>As an important material for many practical and research applications, porous silicon has attracted interest for decades. Conventional preparations suffer from high mass loss because of their etching nature. A few alternative routes have been reported, including magnesiothermic reduction; however, pre-formed porous precursors are still necessary, leading to complicated syntheses. Here we demonstrate a bottom-up synthesis of mesoporous crystalline silicon materials with high surface area and tunable primary particle/pore size via a self-templating pore formation process. The chemical synthesis utilizes salt by-products as internal self-forming templates that can be easily removed without any etchants. The advantages of these materials, such as their nanosized crystalline primary particles and high surface areas, enable increased photocatalytic hydrogen evolution rate and extended working life. These also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries. Porous silicon is a technologically important material; however, many top-down etching fabrication processes result in significant material wastage. Here, the authors report a bottom-up self-templating fabrication route and assess the hydrogen evolution performance of the resulting material.</description><subject>121/143</subject><subject>140/133</subject><subject>140/146</subject><subject>639/301/930/1032</subject><subject>Composite materials</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>multidisciplinary</subject><subject>Photocatalysis</subject><subject>Pore size</subject><subject>Porous materials</subject><subject>Salt</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoTnQ3_gAJeCNKtWnTpr1U8QsG3uh1ydKTLaNNak4rDPzxZm7q0Nwk4X14TsJLyDGLL1mcFldWubZFnsfZDjlIYs4iJpJ0d-s8ImPERRxWWrKC830ySrhgIkQH5OPG9b1ro6GjuLT9HNAgdZrOzWxOcfBaKqDSg6QtoOucdwNS5ZfYy6YxFiiaxihnqbQ1hXfZDLI34RoUpkc6X9bezcCGyDXDV9KB18630io4IntaNgjjzX5IXu_vXm4fo8nzw9Pt9SRSPEv7SDDF80TyKS8KnZQ1CFWqNGOZKBSA1pLJWkFe8mkupipXUrC6jmsospIxprP0kJytvZ13bwNgX7UGFTSNtBD-U7HgyjnP4jSgp3_QhRu8Da9bUTwpRFmsqPM1pbxD9KCrzptW-mXF4mpVS_VbS4BPNsph2kL9g36XEICLNYAhsjPwWzP_6z4BmvCa2g</recordid><startdate>20140410</startdate><enddate>20140410</enddate><creator>Dai, Fang</creator><creator>Zai, Jiantao</creator><creator>Yi, Ran</creator><creator>Gordin, Mikhail L.</creator><creator>Sohn, Hiesang</creator><creator>Chen, Shuru</creator><creator>Wang, Donghai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140410</creationdate><title>Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance</title><author>Dai, Fang ; Zai, Jiantao ; Yi, Ran ; Gordin, Mikhail L. ; Sohn, Hiesang ; Chen, Shuru ; Wang, Donghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-71c462a4b488f29de7c9c351578ceeffa1adce694b67bc6ca71dd0de859111f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>121/143</topic><topic>140/133</topic><topic>140/146</topic><topic>639/301/930/1032</topic><topic>Composite materials</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>multidisciplinary</topic><topic>Photocatalysis</topic><topic>Pore size</topic><topic>Porous materials</topic><topic>Salt</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Fang</creatorcontrib><creatorcontrib>Zai, Jiantao</creatorcontrib><creatorcontrib>Yi, Ran</creatorcontrib><creatorcontrib>Gordin, Mikhail L.</creatorcontrib><creatorcontrib>Sohn, Hiesang</creatorcontrib><creatorcontrib>Chen, Shuru</creatorcontrib><creatorcontrib>Wang, Donghai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Fang</au><au>Zai, Jiantao</au><au>Yi, Ran</au><au>Gordin, Mikhail L.</au><au>Sohn, Hiesang</au><au>Chen, Shuru</au><au>Wang, Donghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-04-10</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3605</spage><epage>3605</epage><pages>3605-3605</pages><artnum>3605</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>As an important material for many practical and research applications, porous silicon has attracted interest for decades. Conventional preparations suffer from high mass loss because of their etching nature. A few alternative routes have been reported, including magnesiothermic reduction; however, pre-formed porous precursors are still necessary, leading to complicated syntheses. Here we demonstrate a bottom-up synthesis of mesoporous crystalline silicon materials with high surface area and tunable primary particle/pore size via a self-templating pore formation process. The chemical synthesis utilizes salt by-products as internal self-forming templates that can be easily removed without any etchants. The advantages of these materials, such as their nanosized crystalline primary particles and high surface areas, enable increased photocatalytic hydrogen evolution rate and extended working life. These also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries. Porous silicon is a technologically important material; however, many top-down etching fabrication processes result in significant material wastage. Here, the authors report a bottom-up self-templating fabrication route and assess the hydrogen evolution performance of the resulting material.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24717723</pmid><doi>10.1038/ncomms4605</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-04, Vol.5 (1), p.3605-3605, Article 3605
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1515644503
source Springer Nature OA/Free Journals
subjects 121/143
140/133
140/146
639/301/930/1032
Composite materials
Humanities and Social Sciences
Hydrogen
multidisciplinary
Photocatalysis
Pore size
Porous materials
Salt
Science
Science (multidisciplinary)
Silicon
title Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T04%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom-up%20synthesis%20of%20high%20surface%20area%20mesoporous%20crystalline%20silicon%20and%20evaluation%20of%20its%20hydrogen%20evolution%20performance&rft.jtitle=Nature%20communications&rft.au=Dai,%20Fang&rft.date=2014-04-10&rft.volume=5&rft.issue=1&rft.spage=3605&rft.epage=3605&rft.pages=3605-3605&rft.artnum=3605&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4605&rft_dat=%3Cproquest_C6C%3E1515644503%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514287983&rft_id=info:pmid/24717723&rfr_iscdi=true