Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles
Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth fa...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2014-06, Vol.35 (18), p.5028-5038 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5038 |
---|---|
container_issue | 18 |
container_start_page | 5028 |
container_title | Biomaterials |
container_volume | 35 |
creator | Feng, Qiang Yu, Min-Zhi Wang, Jian-Cheng Hou, Wen-Jie Gao, Ling-Yan Ma, Xiao-Fei Pei, Xi-Wei Niu, Yu-Jie Liu, Xiao-Yan Qiu, Chong Pang, Wen-Hao Du, Li-Li Zhang, Qiang |
description | Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy. |
doi_str_mv | 10.1016/j.biomaterials.2014.03.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1514436177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961214002476</els_id><sourcerecordid>1514436177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</originalsourceid><addsrcrecordid>eNqNUstu1TAQtRCIXgq_gCxWbBL8yJMFUlXaglSBRIGt5dgTOpfEDnbuFdl11R_gD_kSHN2CECtWlj3n4ZkzhDzjLOeMVy-2eYd-1DME1EPMBeNFzmTOuLhHNrypm6xsWXmfbFJBZG3FxRF5FOOWpTsrxENyJIqqYbzlG3J7tTgIXzDOaCi6a-xwRu-o72kXQMeZGu0MBNot1PjMwoB7CMta_3x2cU4jfnh3QrWzdNJmwFl_h4HuUdO9ngL4GS1ko7fYI9gkEODnzY94DcNAnXZ-0iH5DhAfkwd96gWe3J3H5NP52cfTN9nl-4u3pyeXmSlkOWcVA90IYVpd2cZK1jUWrO1tJbS0fVvXJatEyZlkom9tI0yvG1bLvpQiPVouj8nzg-4U_LcdxFmNGE36jnbgd1HxkheFrHhdJ-jLA9QEH2OAXk0BRx0WxZlac1Bb9XcOas1BMalSDon89M5n141g_1B_Dz4BXh8AkLrdIwQVDUKatMUAZlbW4__5vPpHJoXg0OjhKywQt34X3MrhKgrF1NW6EetCpEVgoqgr-QuY-bgB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514436177</pqid></control><display><type>article</type><title>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Feng, Qiang ; Yu, Min-Zhi ; Wang, Jian-Cheng ; Hou, Wen-Jie ; Gao, Ling-Yan ; Ma, Xiao-Fei ; Pei, Xi-Wei ; Niu, Yu-Jie ; Liu, Xiao-Yan ; Qiu, Chong ; Pang, Wen-Hao ; Du, Li-Li ; Zhang, Qiang</creator><creatorcontrib>Feng, Qiang ; Yu, Min-Zhi ; Wang, Jian-Cheng ; Hou, Wen-Jie ; Gao, Ling-Yan ; Ma, Xiao-Fei ; Pei, Xi-Wei ; Niu, Yu-Jie ; Liu, Xiao-Yan ; Qiu, Chong ; Pang, Wen-Hao ; Du, Li-Li ; Zhang, Qiang</creatorcontrib><description>Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.03.012</identifier><identifier>PMID: 24680191</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Antineoplastic Agents, Phytogenic - pharmacology ; Breast Neoplasms - therapy ; Cell Cycle - drug effects ; Co-delivery ; Core-shell nanoparticle ; Dentistry ; Down-Regulation ; Drug Delivery Systems ; Female ; Humans ; MCF-7 Cells ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Targeted Therapy ; Nanoparticles - chemistry ; Paclitaxel ; Paclitaxel - pharmacology ; Receptors, Somatostatin - metabolism ; RNA Interference ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Somatostatin - analogs & derivatives ; Somatostatin - pharmacology ; Tumor targeting therapy ; Vapreotide ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; VEGF targeted siRNA</subject><ispartof>Biomaterials, 2014-06, Vol.35 (18), p.5028-5038</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</citedby><cites>FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24680191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Yu, Min-Zhi</creatorcontrib><creatorcontrib>Wang, Jian-Cheng</creatorcontrib><creatorcontrib>Hou, Wen-Jie</creatorcontrib><creatorcontrib>Gao, Ling-Yan</creatorcontrib><creatorcontrib>Ma, Xiao-Fei</creatorcontrib><creatorcontrib>Pei, Xi-Wei</creatorcontrib><creatorcontrib>Niu, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Xiao-Yan</creatorcontrib><creatorcontrib>Qiu, Chong</creatorcontrib><creatorcontrib>Pang, Wen-Hao</creatorcontrib><creatorcontrib>Du, Li-Li</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Breast Neoplasms - therapy</subject><subject>Cell Cycle - drug effects</subject><subject>Co-delivery</subject><subject>Core-shell nanoparticle</subject><subject>Dentistry</subject><subject>Down-Regulation</subject><subject>Drug Delivery Systems</subject><subject>Female</subject><subject>Humans</subject><subject>MCF-7 Cells</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular Targeted Therapy</subject><subject>Nanoparticles - chemistry</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Receptors, Somatostatin - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Somatostatin - analogs & derivatives</subject><subject>Somatostatin - pharmacology</subject><subject>Tumor targeting therapy</subject><subject>Vapreotide</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF targeted siRNA</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUstu1TAQtRCIXgq_gCxWbBL8yJMFUlXaglSBRIGt5dgTOpfEDnbuFdl11R_gD_kSHN2CECtWlj3n4ZkzhDzjLOeMVy-2eYd-1DME1EPMBeNFzmTOuLhHNrypm6xsWXmfbFJBZG3FxRF5FOOWpTsrxENyJIqqYbzlG3J7tTgIXzDOaCi6a-xwRu-o72kXQMeZGu0MBNot1PjMwoB7CMta_3x2cU4jfnh3QrWzdNJmwFl_h4HuUdO9ngL4GS1ko7fYI9gkEODnzY94DcNAnXZ-0iH5DhAfkwd96gWe3J3H5NP52cfTN9nl-4u3pyeXmSlkOWcVA90IYVpd2cZK1jUWrO1tJbS0fVvXJatEyZlkom9tI0yvG1bLvpQiPVouj8nzg-4U_LcdxFmNGE36jnbgd1HxkheFrHhdJ-jLA9QEH2OAXk0BRx0WxZlac1Bb9XcOas1BMalSDon89M5n141g_1B_Dz4BXh8AkLrdIwQVDUKatMUAZlbW4__5vPpHJoXg0OjhKywQt34X3MrhKgrF1NW6EetCpEVgoqgr-QuY-bgB</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Feng, Qiang</creator><creator>Yu, Min-Zhi</creator><creator>Wang, Jian-Cheng</creator><creator>Hou, Wen-Jie</creator><creator>Gao, Ling-Yan</creator><creator>Ma, Xiao-Fei</creator><creator>Pei, Xi-Wei</creator><creator>Niu, Yu-Jie</creator><creator>Liu, Xiao-Yan</creator><creator>Qiu, Chong</creator><creator>Pang, Wen-Hao</creator><creator>Du, Li-Li</creator><creator>Zhang, Qiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</title><author>Feng, Qiang ; Yu, Min-Zhi ; Wang, Jian-Cheng ; Hou, Wen-Jie ; Gao, Ling-Yan ; Ma, Xiao-Fei ; Pei, Xi-Wei ; Niu, Yu-Jie ; Liu, Xiao-Yan ; Qiu, Chong ; Pang, Wen-Hao ; Du, Li-Li ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Breast Neoplasms - therapy</topic><topic>Cell Cycle - drug effects</topic><topic>Co-delivery</topic><topic>Core-shell nanoparticle</topic><topic>Dentistry</topic><topic>Down-Regulation</topic><topic>Drug Delivery Systems</topic><topic>Female</topic><topic>Humans</topic><topic>MCF-7 Cells</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular Targeted Therapy</topic><topic>Nanoparticles - chemistry</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Receptors, Somatostatin - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Somatostatin - analogs & derivatives</topic><topic>Somatostatin - pharmacology</topic><topic>Tumor targeting therapy</topic><topic>Vapreotide</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF targeted siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Yu, Min-Zhi</creatorcontrib><creatorcontrib>Wang, Jian-Cheng</creatorcontrib><creatorcontrib>Hou, Wen-Jie</creatorcontrib><creatorcontrib>Gao, Ling-Yan</creatorcontrib><creatorcontrib>Ma, Xiao-Fei</creatorcontrib><creatorcontrib>Pei, Xi-Wei</creatorcontrib><creatorcontrib>Niu, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Xiao-Yan</creatorcontrib><creatorcontrib>Qiu, Chong</creatorcontrib><creatorcontrib>Pang, Wen-Hao</creatorcontrib><creatorcontrib>Du, Li-Li</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Qiang</au><au>Yu, Min-Zhi</au><au>Wang, Jian-Cheng</au><au>Hou, Wen-Jie</au><au>Gao, Ling-Yan</au><au>Ma, Xiao-Fei</au><au>Pei, Xi-Wei</au><au>Niu, Yu-Jie</au><au>Liu, Xiao-Yan</au><au>Qiu, Chong</au><au>Pang, Wen-Hao</au><au>Du, Li-Li</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>35</volume><issue>18</issue><spage>5028</spage><epage>5038</epage><pages>5028-5038</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24680191</pmid><doi>10.1016/j.biomaterials.2014.03.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2014-06, Vol.35 (18), p.5028-5038 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1514436177 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Animals Antineoplastic Agents, Phytogenic - pharmacology Breast Neoplasms - therapy Cell Cycle - drug effects Co-delivery Core-shell nanoparticle Dentistry Down-Regulation Drug Delivery Systems Female Humans MCF-7 Cells Mice Mice, Inbred BALB C Mice, Nude Molecular Targeted Therapy Nanoparticles - chemistry Paclitaxel Paclitaxel - pharmacology Receptors, Somatostatin - metabolism RNA Interference RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Somatostatin - analogs & derivatives Somatostatin - pharmacology Tumor targeting therapy Vapreotide Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism VEGF targeted siRNA |
title | Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20inhibition%20of%20breast%20cancer%20by%20co-delivery%20of%20VEGF%20siRNA%20and%20paclitaxel%20via%20vapreotide-modified%20core%E2%80%93shell%20nanoparticles&rft.jtitle=Biomaterials&rft.au=Feng,%20Qiang&rft.date=2014-06-01&rft.volume=35&rft.issue=18&rft.spage=5028&rft.epage=5038&rft.pages=5028-5038&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.03.012&rft_dat=%3Cproquest_cross%3E1514436177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514436177&rft_id=info:pmid/24680191&rft_els_id=S0142961214002476&rfr_iscdi=true |