Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles

Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-06, Vol.35 (18), p.5028-5038
Hauptverfasser: Feng, Qiang, Yu, Min-Zhi, Wang, Jian-Cheng, Hou, Wen-Jie, Gao, Ling-Yan, Ma, Xiao-Fei, Pei, Xi-Wei, Niu, Yu-Jie, Liu, Xiao-Yan, Qiu, Chong, Pang, Wen-Hao, Du, Li-Li, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5038
container_issue 18
container_start_page 5028
container_title Biomaterials
container_volume 35
creator Feng, Qiang
Yu, Min-Zhi
Wang, Jian-Cheng
Hou, Wen-Jie
Gao, Ling-Yan
Ma, Xiao-Fei
Pei, Xi-Wei
Niu, Yu-Jie
Liu, Xiao-Yan
Qiu, Chong
Pang, Wen-Hao
Du, Li-Li
Zhang, Qiang
description Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.
doi_str_mv 10.1016/j.biomaterials.2014.03.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1514436177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961214002476</els_id><sourcerecordid>1514436177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</originalsourceid><addsrcrecordid>eNqNUstu1TAQtRCIXgq_gCxWbBL8yJMFUlXaglSBRIGt5dgTOpfEDnbuFdl11R_gD_kSHN2CECtWlj3n4ZkzhDzjLOeMVy-2eYd-1DME1EPMBeNFzmTOuLhHNrypm6xsWXmfbFJBZG3FxRF5FOOWpTsrxENyJIqqYbzlG3J7tTgIXzDOaCi6a-xwRu-o72kXQMeZGu0MBNot1PjMwoB7CMta_3x2cU4jfnh3QrWzdNJmwFl_h4HuUdO9ngL4GS1ko7fYI9gkEODnzY94DcNAnXZ-0iH5DhAfkwd96gWe3J3H5NP52cfTN9nl-4u3pyeXmSlkOWcVA90IYVpd2cZK1jUWrO1tJbS0fVvXJatEyZlkom9tI0yvG1bLvpQiPVouj8nzg-4U_LcdxFmNGE36jnbgd1HxkheFrHhdJ-jLA9QEH2OAXk0BRx0WxZlac1Bb9XcOas1BMalSDon89M5n141g_1B_Dz4BXh8AkLrdIwQVDUKatMUAZlbW4__5vPpHJoXg0OjhKywQt34X3MrhKgrF1NW6EetCpEVgoqgr-QuY-bgB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514436177</pqid></control><display><type>article</type><title>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Feng, Qiang ; Yu, Min-Zhi ; Wang, Jian-Cheng ; Hou, Wen-Jie ; Gao, Ling-Yan ; Ma, Xiao-Fei ; Pei, Xi-Wei ; Niu, Yu-Jie ; Liu, Xiao-Yan ; Qiu, Chong ; Pang, Wen-Hao ; Du, Li-Li ; Zhang, Qiang</creator><creatorcontrib>Feng, Qiang ; Yu, Min-Zhi ; Wang, Jian-Cheng ; Hou, Wen-Jie ; Gao, Ling-Yan ; Ma, Xiao-Fei ; Pei, Xi-Wei ; Niu, Yu-Jie ; Liu, Xiao-Yan ; Qiu, Chong ; Pang, Wen-Hao ; Du, Li-Li ; Zhang, Qiang</creatorcontrib><description>Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.03.012</identifier><identifier>PMID: 24680191</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Antineoplastic Agents, Phytogenic - pharmacology ; Breast Neoplasms - therapy ; Cell Cycle - drug effects ; Co-delivery ; Core-shell nanoparticle ; Dentistry ; Down-Regulation ; Drug Delivery Systems ; Female ; Humans ; MCF-7 Cells ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Targeted Therapy ; Nanoparticles - chemistry ; Paclitaxel ; Paclitaxel - pharmacology ; Receptors, Somatostatin - metabolism ; RNA Interference ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Somatostatin - analogs &amp; derivatives ; Somatostatin - pharmacology ; Tumor targeting therapy ; Vapreotide ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; VEGF targeted siRNA</subject><ispartof>Biomaterials, 2014-06, Vol.35 (18), p.5028-5038</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</citedby><cites>FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24680191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Yu, Min-Zhi</creatorcontrib><creatorcontrib>Wang, Jian-Cheng</creatorcontrib><creatorcontrib>Hou, Wen-Jie</creatorcontrib><creatorcontrib>Gao, Ling-Yan</creatorcontrib><creatorcontrib>Ma, Xiao-Fei</creatorcontrib><creatorcontrib>Pei, Xi-Wei</creatorcontrib><creatorcontrib>Niu, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Xiao-Yan</creatorcontrib><creatorcontrib>Qiu, Chong</creatorcontrib><creatorcontrib>Pang, Wen-Hao</creatorcontrib><creatorcontrib>Du, Li-Li</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Breast Neoplasms - therapy</subject><subject>Cell Cycle - drug effects</subject><subject>Co-delivery</subject><subject>Core-shell nanoparticle</subject><subject>Dentistry</subject><subject>Down-Regulation</subject><subject>Drug Delivery Systems</subject><subject>Female</subject><subject>Humans</subject><subject>MCF-7 Cells</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular Targeted Therapy</subject><subject>Nanoparticles - chemistry</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Receptors, Somatostatin - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Somatostatin - analogs &amp; derivatives</subject><subject>Somatostatin - pharmacology</subject><subject>Tumor targeting therapy</subject><subject>Vapreotide</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>VEGF targeted siRNA</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUstu1TAQtRCIXgq_gCxWbBL8yJMFUlXaglSBRIGt5dgTOpfEDnbuFdl11R_gD_kSHN2CECtWlj3n4ZkzhDzjLOeMVy-2eYd-1DME1EPMBeNFzmTOuLhHNrypm6xsWXmfbFJBZG3FxRF5FOOWpTsrxENyJIqqYbzlG3J7tTgIXzDOaCi6a-xwRu-o72kXQMeZGu0MBNot1PjMwoB7CMta_3x2cU4jfnh3QrWzdNJmwFl_h4HuUdO9ngL4GS1ko7fYI9gkEODnzY94DcNAnXZ-0iH5DhAfkwd96gWe3J3H5NP52cfTN9nl-4u3pyeXmSlkOWcVA90IYVpd2cZK1jUWrO1tJbS0fVvXJatEyZlkom9tI0yvG1bLvpQiPVouj8nzg-4U_LcdxFmNGE36jnbgd1HxkheFrHhdJ-jLA9QEH2OAXk0BRx0WxZlac1Bb9XcOas1BMalSDon89M5n141g_1B_Dz4BXh8AkLrdIwQVDUKatMUAZlbW4__5vPpHJoXg0OjhKywQt34X3MrhKgrF1NW6EetCpEVgoqgr-QuY-bgB</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Feng, Qiang</creator><creator>Yu, Min-Zhi</creator><creator>Wang, Jian-Cheng</creator><creator>Hou, Wen-Jie</creator><creator>Gao, Ling-Yan</creator><creator>Ma, Xiao-Fei</creator><creator>Pei, Xi-Wei</creator><creator>Niu, Yu-Jie</creator><creator>Liu, Xiao-Yan</creator><creator>Qiu, Chong</creator><creator>Pang, Wen-Hao</creator><creator>Du, Li-Li</creator><creator>Zhang, Qiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</title><author>Feng, Qiang ; Yu, Min-Zhi ; Wang, Jian-Cheng ; Hou, Wen-Jie ; Gao, Ling-Yan ; Ma, Xiao-Fei ; Pei, Xi-Wei ; Niu, Yu-Jie ; Liu, Xiao-Yan ; Qiu, Chong ; Pang, Wen-Hao ; Du, Li-Li ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-60ea822c9a6d8d30b8deddfd62a3df9775062510302f9d82cfa8073f532103d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Breast Neoplasms - therapy</topic><topic>Cell Cycle - drug effects</topic><topic>Co-delivery</topic><topic>Core-shell nanoparticle</topic><topic>Dentistry</topic><topic>Down-Regulation</topic><topic>Drug Delivery Systems</topic><topic>Female</topic><topic>Humans</topic><topic>MCF-7 Cells</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular Targeted Therapy</topic><topic>Nanoparticles - chemistry</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Receptors, Somatostatin - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Somatostatin - analogs &amp; derivatives</topic><topic>Somatostatin - pharmacology</topic><topic>Tumor targeting therapy</topic><topic>Vapreotide</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>VEGF targeted siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Qiang</creatorcontrib><creatorcontrib>Yu, Min-Zhi</creatorcontrib><creatorcontrib>Wang, Jian-Cheng</creatorcontrib><creatorcontrib>Hou, Wen-Jie</creatorcontrib><creatorcontrib>Gao, Ling-Yan</creatorcontrib><creatorcontrib>Ma, Xiao-Fei</creatorcontrib><creatorcontrib>Pei, Xi-Wei</creatorcontrib><creatorcontrib>Niu, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Xiao-Yan</creatorcontrib><creatorcontrib>Qiu, Chong</creatorcontrib><creatorcontrib>Pang, Wen-Hao</creatorcontrib><creatorcontrib>Du, Li-Li</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Qiang</au><au>Yu, Min-Zhi</au><au>Wang, Jian-Cheng</au><au>Hou, Wen-Jie</au><au>Gao, Ling-Yan</au><au>Ma, Xiao-Fei</au><au>Pei, Xi-Wei</au><au>Niu, Yu-Jie</au><au>Liu, Xiao-Yan</au><au>Qiu, Chong</au><au>Pang, Wen-Hao</au><au>Du, Li-Li</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>35</volume><issue>18</issue><spage>5028</spage><epage>5038</epage><pages>5028-5038</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core–shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles would be a promising approach for tumor targeted therapy.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24680191</pmid><doi>10.1016/j.biomaterials.2014.03.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2014-06, Vol.35 (18), p.5028-5038
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1514436177
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Antineoplastic Agents, Phytogenic - pharmacology
Breast Neoplasms - therapy
Cell Cycle - drug effects
Co-delivery
Core-shell nanoparticle
Dentistry
Down-Regulation
Drug Delivery Systems
Female
Humans
MCF-7 Cells
Mice
Mice, Inbred BALB C
Mice, Nude
Molecular Targeted Therapy
Nanoparticles - chemistry
Paclitaxel
Paclitaxel - pharmacology
Receptors, Somatostatin - metabolism
RNA Interference
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Somatostatin - analogs & derivatives
Somatostatin - pharmacology
Tumor targeting therapy
Vapreotide
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
VEGF targeted siRNA
title Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core–shell nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20inhibition%20of%20breast%20cancer%20by%20co-delivery%20of%20VEGF%20siRNA%20and%20paclitaxel%20via%20vapreotide-modified%20core%E2%80%93shell%20nanoparticles&rft.jtitle=Biomaterials&rft.au=Feng,%20Qiang&rft.date=2014-06-01&rft.volume=35&rft.issue=18&rft.spage=5028&rft.epage=5038&rft.pages=5028-5038&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.03.012&rft_dat=%3Cproquest_cross%3E1514436177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514436177&rft_id=info:pmid/24680191&rft_els_id=S0142961214002476&rfr_iscdi=true