Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle

Previous ¹³C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (14), p.5385-5390
Hauptverfasser: Patel, Anant B., Lai, James C. K., Chowdhury, Golam M. I., Hyder, Fahmeed, Rothman, Douglas L., Shulman, Robert G., Behar, Kevin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5390
container_issue 14
container_start_page 5385
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Patel, Anant B.
Lai, James C. K.
Chowdhury, Golam M. I.
Hyder, Fahmeed
Rothman, Douglas L.
Shulman, Robert G.
Behar, Kevin L.
description Previous ¹³C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy- d -glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG ₆P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG ₆P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo , indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.
doi_str_mv 10.1073/pnas.1403576111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1514433541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771419</jstor_id><sourcerecordid>23771419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-bff945e77a4acce208196b9c6dd7ccd4993eb6fd8f23b843cfc59439107efbe43</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYpeFMyfAEhcu2fXEdhxfkNDyKa3EAfZsOc6kdZXGwXaK-gv427jb0gKXPViWPM881ryaongO9BKoZFfTaOIlcMqErAHgQXEOVEFZc0UfFueUVrJseMXPiicxriilSjT0cXFWcUlrBfy8-PXeBbSJ4MZ1OFokvQ_E2OQ2Lm3LDicc83sii2G2PiKZlj7mE7aDSc6PxI1kxDn4MZKfLi2JW0-Ds3e1eOdKSyQmpuDtNmGZfLnHyZA_MQlJXM4pDfi0eNSbIeKzw31R3H788P36c3nz9dOX63c3pRVCprLte8UFSmm4sRYr2oCqW2XrrpPWdlwphm3dd01fsbbhzPZWKM5UDgv7Fjm7KN7uvdPcrrGzebZgBj0FtzZhq71x-t_K6JZ64TeaqaaGSmbBm4Mg-B8zxqTXLlocBjOin6OGhjJgvAJ2P1rLmgkFit-PCuCcMcEho6__Q1d-DmMObUc1kDORO-pqT9ngYwzYH0cEqnero3ero0-rkzte_p3Mkf-zKxl4dQB2nUcdQLZowRqRiRd7YhWTDycDkxI4qJOhN16bRXBR336rKNSU5vG4UOw3MEzgug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518120871</pqid></control><display><type>article</type><title>Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Patel, Anant B. ; Lai, James C. K. ; Chowdhury, Golam M. I. ; Hyder, Fahmeed ; Rothman, Douglas L. ; Shulman, Robert G. ; Behar, Kevin L.</creator><creatorcontrib>Patel, Anant B. ; Lai, James C. K. ; Chowdhury, Golam M. I. ; Hyder, Fahmeed ; Rothman, Douglas L. ; Shulman, Robert G. ; Behar, Kevin L.</creatorcontrib><description>Previous ¹³C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy- d -glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG ₆P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG ₆P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo , indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1403576111</identifier><identifier>PMID: 24706914</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Astrocytes ; Astrocytes - metabolism ; Biological Sciences ; Brain ; cortex ; Glucose ; Glucose - metabolism ; glutamic acid ; glutamine ; Glycolysis ; Lactates ; Lactic Acid - metabolism ; metabolites ; Modeling ; Molecules ; nerve tissue ; Nerves ; Neurons ; Neurons - metabolism ; Oxidation ; Phosphorylation ; prediction ; pyruvic acid ; Rats ; Rodents ; Seizures ; spectroscopy ; stable isotopes ; stoichiometry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (14), p.5385-5390</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 8, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-bff945e77a4acce208196b9c6dd7ccd4993eb6fd8f23b843cfc59439107efbe43</citedby><cites>FETCH-LOGICAL-c557t-bff945e77a4acce208196b9c6dd7ccd4993eb6fd8f23b843cfc59439107efbe43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771419$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771419$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24706914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Anant B.</creatorcontrib><creatorcontrib>Lai, James C. K.</creatorcontrib><creatorcontrib>Chowdhury, Golam M. I.</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Rothman, Douglas L.</creatorcontrib><creatorcontrib>Shulman, Robert G.</creatorcontrib><creatorcontrib>Behar, Kevin L.</creatorcontrib><title>Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Previous ¹³C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy- d -glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG ₆P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG ₆P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo , indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>cortex</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>glutamic acid</subject><subject>glutamine</subject><subject>Glycolysis</subject><subject>Lactates</subject><subject>Lactic Acid - metabolism</subject><subject>metabolites</subject><subject>Modeling</subject><subject>Molecules</subject><subject>nerve tissue</subject><subject>Nerves</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Oxidation</subject><subject>Phosphorylation</subject><subject>prediction</subject><subject>pyruvic acid</subject><subject>Rats</subject><subject>Rodents</subject><subject>Seizures</subject><subject>spectroscopy</subject><subject>stable isotopes</subject><subject>stoichiometry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhiMEYpeFMyfAEhcu2fXEdhxfkNDyKa3EAfZsOc6kdZXGwXaK-gv427jb0gKXPViWPM881ryaongO9BKoZFfTaOIlcMqErAHgQXEOVEFZc0UfFueUVrJseMXPiicxriilSjT0cXFWcUlrBfy8-PXeBbSJ4MZ1OFokvQ_E2OQ2Lm3LDicc83sii2G2PiKZlj7mE7aDSc6PxI1kxDn4MZKfLi2JW0-Ds3e1eOdKSyQmpuDtNmGZfLnHyZA_MQlJXM4pDfi0eNSbIeKzw31R3H788P36c3nz9dOX63c3pRVCprLte8UFSmm4sRYr2oCqW2XrrpPWdlwphm3dd01fsbbhzPZWKM5UDgv7Fjm7KN7uvdPcrrGzebZgBj0FtzZhq71x-t_K6JZ64TeaqaaGSmbBm4Mg-B8zxqTXLlocBjOin6OGhjJgvAJ2P1rLmgkFit-PCuCcMcEho6__Q1d-DmMObUc1kDORO-pqT9ngYwzYH0cEqnero3ero0-rkzte_p3Mkf-zKxl4dQB2nUcdQLZowRqRiRd7YhWTDycDkxI4qJOhN16bRXBR336rKNSU5vG4UOw3MEzgug</recordid><startdate>20140408</startdate><enddate>20140408</enddate><creator>Patel, Anant B.</creator><creator>Lai, James C. K.</creator><creator>Chowdhury, Golam M. I.</creator><creator>Hyder, Fahmeed</creator><creator>Rothman, Douglas L.</creator><creator>Shulman, Robert G.</creator><creator>Behar, Kevin L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140408</creationdate><title>Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle</title><author>Patel, Anant B. ; Lai, James C. K. ; Chowdhury, Golam M. I. ; Hyder, Fahmeed ; Rothman, Douglas L. ; Shulman, Robert G. ; Behar, Kevin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-bff945e77a4acce208196b9c6dd7ccd4993eb6fd8f23b843cfc59439107efbe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>cortex</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>glutamic acid</topic><topic>glutamine</topic><topic>Glycolysis</topic><topic>Lactates</topic><topic>Lactic Acid - metabolism</topic><topic>metabolites</topic><topic>Modeling</topic><topic>Molecules</topic><topic>nerve tissue</topic><topic>Nerves</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Oxidation</topic><topic>Phosphorylation</topic><topic>prediction</topic><topic>pyruvic acid</topic><topic>Rats</topic><topic>Rodents</topic><topic>Seizures</topic><topic>spectroscopy</topic><topic>stable isotopes</topic><topic>stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Anant B.</creatorcontrib><creatorcontrib>Lai, James C. K.</creatorcontrib><creatorcontrib>Chowdhury, Golam M. I.</creatorcontrib><creatorcontrib>Hyder, Fahmeed</creatorcontrib><creatorcontrib>Rothman, Douglas L.</creatorcontrib><creatorcontrib>Shulman, Robert G.</creatorcontrib><creatorcontrib>Behar, Kevin L.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Anant B.</au><au>Lai, James C. K.</au><au>Chowdhury, Golam M. I.</au><au>Hyder, Fahmeed</au><au>Rothman, Douglas L.</au><au>Shulman, Robert G.</au><au>Behar, Kevin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-08</date><risdate>2014</risdate><volume>111</volume><issue>14</issue><spage>5385</spage><epage>5390</epage><pages>5385-5390</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Previous ¹³C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy- d -glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG ₆P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG ₆P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo , indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24706914</pmid><doi>10.1073/pnas.1403576111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (14), p.5385-5390
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1514433541
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Astrocytes
Astrocytes - metabolism
Biological Sciences
Brain
cortex
Glucose
Glucose - metabolism
glutamic acid
glutamine
Glycolysis
Lactates
Lactic Acid - metabolism
metabolites
Modeling
Molecules
nerve tissue
Nerves
Neurons
Neurons - metabolism
Oxidation
Phosphorylation
prediction
pyruvic acid
Rats
Rodents
Seizures
spectroscopy
stable isotopes
stoichiometry
title Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20evidence%20for%20activity-dependent%20glucose%20phosphorylation%20in%20neurons%20with%20implications%20for%20the%20astrocyte-to-neuron%20lactate%20shuttle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Patel,%20Anant%20B.&rft.date=2014-04-08&rft.volume=111&rft.issue=14&rft.spage=5385&rft.epage=5390&rft.pages=5385-5390&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1403576111&rft_dat=%3Cjstor_proqu%3E23771419%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518120871&rft_id=info:pmid/24706914&rft_jstor_id=23771419&rfr_iscdi=true