Behaviors of Denitrogenation in RH-MFB

According to the analysis related to kinetic mechanism of vacuum denitrogenation and combining with the actual production of RH-MFB (a combination of Ruhstahl-Hausen vacuum degassing process with a multifunctional oxygen lance) at Liansteel, the limit step and model equation of vacuum denitrogenatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of iron and steel research, international international, 2013-07, Vol.20 (7), p.40-44
Hauptverfasser: Zhou, Jian, Qin, Zhe, Zhang, Bo, Peng, Qi-chun, Qiu, Sheng-tao, Gan, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the analysis related to kinetic mechanism of vacuum denitrogenation and combining with the actual production of RH-MFB (a combination of Ruhstahl-Hausen vacuum degassing process with a multifunctional oxygen lance) at Liansteel, the limit step and model equation of vacuum denitrogenation are determined. Meanwhile, the influencing factors of nitrogen removal from liquid steel in vacuum of RH-MFB are analyzed. The results show that the limit step of vacuum denitrogenation in RH-MFB is the mass transfer of nitrogen in liquid boundary layer and the reaction follows first order kinetics. Keeping the necessary circulation time under the working pressure (67 Pa) is helpful to nitrogen removal from steel. The oxygen content in molten steel has little influence on the removal of ni-trogen after deep deoxidation, while the sulphur content in liquid steel is always relatively low and has little effect on denitrogenation. The sharp decrease of carbon content in steel drives the process of denitrogenation reaction so as to exhibit a faster denitrogenation rate. The interracial chemical reaction and argon blowing play a major role in the ni-trogen removal when the carbon content in liquid steel is stable.
ISSN:1006-706X
2210-3988
DOI:10.1016/S1006-706X(13)60124-7