Optimal identifying codes in the infinite 3-dimensional king grid
A subset C⊆V is an r-identifying code in a graph G=(V,E) if the sets Ir(v)={c∈C∣d(c,v)≤r} are distinct and non-empty for all vertices v⊆V. Here, d(c,v) denotes the number of edges on any shortest path from c to v. We consider the infinite n-dimensional king grid, i.e., the graph with vertex set V=Zn...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2014-02, Vol.36, p.641-659 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | |
container_start_page | 641 |
container_title | European journal of combinatorics |
container_volume | 36 |
creator | Pelto, Mikko |
description | A subset C⊆V is an r-identifying code in a graph G=(V,E) if the sets Ir(v)={c∈C∣d(c,v)≤r} are distinct and non-empty for all vertices v⊆V. Here, d(c,v) denotes the number of edges on any shortest path from c to v. We consider the infinite n-dimensional king grid, i.e., the graph with vertex set V=Zn and the edge set E={{x=(x1,…,xn),y=(y1,…,yn)}∣|xi−yi|≤1for i=1,…,n,x≠y}, and give some lower bounds on the density of an r-identifying code. In particular, we prove that for n=3 and for all r≥15, the optimal density of an r-identifying code is 18r2. The problem finding a minimum identifying code in the 3-dimensional king grid is equivalent with a minimum packing problem of cubes in the 3-dimensional lattice so that every point is covered by a distinct and non-empty subset of cubes. |
doi_str_mv | 10.1016/j.ejc.2013.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513490088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669813002370</els_id><sourcerecordid>1513490088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9e5b1c80c091a84fd04aad7b671b0075eeb0e04e31feb01bb8ac8f1bcd653ebf3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxy5JKwW-dXnKoKClKlXuBsxfa6OKROsVOkvj2OypnTzq5mVpqPsXuEDAHLxy6jTmULQB73DGBxwWYITZE2TYWXbAYYdVk29TW7CaEDQCw4n7Hl9jDafdsnVpMbrTlZt0vUoCkk1iXjJ8VhrLMjJTzVdk8u2MFF_9dk3Hmrb9mVaftAd39zzj5ent9Xr-lmu35bLTep4otiTBsqJKoaFDTY1rnRkLetrmRZoQSoCiIJBDlxNFGhlHWraoNS6bLgJA2fs4fz34Mfvo8URrG3QVHft46GYxBYIM8bgLqOVjxblR9C8GTEwceS_iQQxIRLdCLiEhOu6RRxxczTOUOxw48lL4Ky5BRp60mNQg_2n_QvIZ5y_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513490088</pqid></control><display><type>article</type><title>Optimal identifying codes in the infinite 3-dimensional king grid</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pelto, Mikko</creator><creatorcontrib>Pelto, Mikko</creatorcontrib><description>A subset C⊆V is an r-identifying code in a graph G=(V,E) if the sets Ir(v)={c∈C∣d(c,v)≤r} are distinct and non-empty for all vertices v⊆V. Here, d(c,v) denotes the number of edges on any shortest path from c to v. We consider the infinite n-dimensional king grid, i.e., the graph with vertex set V=Zn and the edge set E={{x=(x1,…,xn),y=(y1,…,yn)}∣|xi−yi|≤1for i=1,…,n,x≠y}, and give some lower bounds on the density of an r-identifying code. In particular, we prove that for n=3 and for all r≥15, the optimal density of an r-identifying code is 18r2. The problem finding a minimum identifying code in the 3-dimensional king grid is equivalent with a minimum packing problem of cubes in the 3-dimensional lattice so that every point is covered by a distinct and non-empty subset of cubes.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2013.10.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Combinatorial analysis ; Graphs ; Optimization ; Shortest-path problems</subject><ispartof>European journal of combinatorics, 2014-02, Vol.36, p.641-659</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-9e5b1c80c091a84fd04aad7b671b0075eeb0e04e31feb01bb8ac8f1bcd653ebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195669813002370$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pelto, Mikko</creatorcontrib><title>Optimal identifying codes in the infinite 3-dimensional king grid</title><title>European journal of combinatorics</title><description>A subset C⊆V is an r-identifying code in a graph G=(V,E) if the sets Ir(v)={c∈C∣d(c,v)≤r} are distinct and non-empty for all vertices v⊆V. Here, d(c,v) denotes the number of edges on any shortest path from c to v. We consider the infinite n-dimensional king grid, i.e., the graph with vertex set V=Zn and the edge set E={{x=(x1,…,xn),y=(y1,…,yn)}∣|xi−yi|≤1for i=1,…,n,x≠y}, and give some lower bounds on the density of an r-identifying code. In particular, we prove that for n=3 and for all r≥15, the optimal density of an r-identifying code is 18r2. The problem finding a minimum identifying code in the 3-dimensional king grid is equivalent with a minimum packing problem of cubes in the 3-dimensional lattice so that every point is covered by a distinct and non-empty subset of cubes.</description><subject>Combinatorial analysis</subject><subject>Graphs</subject><subject>Optimization</subject><subject>Shortest-path problems</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxy5JKwW-dXnKoKClKlXuBsxfa6OKROsVOkvj2OypnTzq5mVpqPsXuEDAHLxy6jTmULQB73DGBxwWYITZE2TYWXbAYYdVk29TW7CaEDQCw4n7Hl9jDafdsnVpMbrTlZt0vUoCkk1iXjJ8VhrLMjJTzVdk8u2MFF_9dk3Hmrb9mVaftAd39zzj5ent9Xr-lmu35bLTep4otiTBsqJKoaFDTY1rnRkLetrmRZoQSoCiIJBDlxNFGhlHWraoNS6bLgJA2fs4fz34Mfvo8URrG3QVHft46GYxBYIM8bgLqOVjxblR9C8GTEwceS_iQQxIRLdCLiEhOu6RRxxczTOUOxw48lL4Ky5BRp60mNQg_2n_QvIZ5y_A</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Pelto, Mikko</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201402</creationdate><title>Optimal identifying codes in the infinite 3-dimensional king grid</title><author>Pelto, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9e5b1c80c091a84fd04aad7b671b0075eeb0e04e31feb01bb8ac8f1bcd653ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Combinatorial analysis</topic><topic>Graphs</topic><topic>Optimization</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelto, Mikko</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelto, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal identifying codes in the infinite 3-dimensional king grid</atitle><jtitle>European journal of combinatorics</jtitle><date>2014-02</date><risdate>2014</risdate><volume>36</volume><spage>641</spage><epage>659</epage><pages>641-659</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>A subset C⊆V is an r-identifying code in a graph G=(V,E) if the sets Ir(v)={c∈C∣d(c,v)≤r} are distinct and non-empty for all vertices v⊆V. Here, d(c,v) denotes the number of edges on any shortest path from c to v. We consider the infinite n-dimensional king grid, i.e., the graph with vertex set V=Zn and the edge set E={{x=(x1,…,xn),y=(y1,…,yn)}∣|xi−yi|≤1for i=1,…,n,x≠y}, and give some lower bounds on the density of an r-identifying code. In particular, we prove that for n=3 and for all r≥15, the optimal density of an r-identifying code is 18r2. The problem finding a minimum identifying code in the 3-dimensional king grid is equivalent with a minimum packing problem of cubes in the 3-dimensional lattice so that every point is covered by a distinct and non-empty subset of cubes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2013.10.002</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 2014-02, Vol.36, p.641-659 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513490088 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Combinatorial analysis Graphs Optimization Shortest-path problems |
title | Optimal identifying codes in the infinite 3-dimensional king grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20identifying%20codes%20in%20the%20infinite%203-dimensional%20king%20grid&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Pelto,%20Mikko&rft.date=2014-02&rft.volume=36&rft.spage=641&rft.epage=659&rft.pages=641-659&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2013.10.002&rft_dat=%3Cproquest_cross%3E1513490088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513490088&rft_id=info:pmid/&rft_els_id=S0195669813002370&rfr_iscdi=true |