A Multisensor Integration Approach toward Astronaut Navigation for Landed Lunar Missions

As experienced by Apollo lunar astronauts, spatial orientation can be affected significantly by lunar environmental conditions such as the moon's altered gravity, lack of an atmosphere, limited spatial references, and different level of reflectivity. To help overcome these challenges, a lunar a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2014-03, Vol.31 (2), p.245-262
Hauptverfasser: Li, Rongxing, He, Shaojun, Skopljak, Boris, Meng, Xuelian, Tang, Pingbo, Yilmaz, Alper, Jiang, Jinwei, Oman, Charles M., Banks, Martin, Kim, Sunah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 245
container_title Journal of field robotics
container_volume 31
creator Li, Rongxing
He, Shaojun
Skopljak, Boris
Meng, Xuelian
Tang, Pingbo
Yilmaz, Alper
Jiang, Jinwei
Oman, Charles M.
Banks, Martin
Kim, Sunah
description As experienced by Apollo lunar astronauts, spatial orientation can be affected significantly by lunar environmental conditions such as the moon's altered gravity, lack of an atmosphere, limited spatial references, and different level of reflectivity. To help overcome these challenges, a lunar astronaut navigation system called LASOIS (Lunar Astronaut Spatial Orientation and Information System) has been developed. It can significantly reduce spatial disorientation and improve real‐time navigation capability for astronauts exploring the lunar surface. LASOIS is capable of integrating satellite imagery and sensors mounted on the astronaut spacesuit (including inertial measurement units, stereo cameras, and pressure sensors) by an extended Kalman filter algorithm. The processed navigation information is presented through a wrist‐mounted display system. The system has been tested at three field experiment sites, including Moses Lake, WA, Black Lava Point, AZ, and Haleakala National Park, HI. It is demonstrated that the system has achieved an error rate (or relative accuracy) of 2.4% for astronaut navigation over a traverse of 6.1 km in a lunarlike environment.
doi_str_mv 10.1002/rob.21488
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513482372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3209487051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3288-2dc534ecf3410c9669bb8bb9479efae8c2e6114b61926ab185d791a254b2015a3</originalsourceid><addsrcrecordid>eNp1kE1PwkAURRujiYgu_AdN3OiiMN-dWSJRIAIav3A3mbZTLJYOzrQi_95ilYWJq_eSd-7LzfG8Uwg6EADUtSbqIEg43_NakFIWEMHC_d1OxaF35NwCAIK5oC3vpedPqrzMnC6csf6oKPXcqjIzhd9braxR8atfmrWyid9zpTWFqkp_qj6yeQOldWisikQn_rgqlPUnmXP1wR17B6nKnT75mW3v6frqsT8MxreDUb83DmKMOA9QElNMdJxiAkEsGBNRxKNIkFDoVGkeI80gJBGDAjEVQU6TUECFKIkQgFThtnfe_K3LvlfalXKZuVjnuSq0qZyEFGLCEQ5RjZ79QRemskXdTsKtGsxAiGvqoqFia5yzOpUrmy2V3UgI5NaxrB3Lb8c1223YdZbrzf-gvL-9_E0ETSJzpf7cJZR9kyzEIZWz6UCK4cMNHdw9yxn-AuzYjIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1495936073</pqid></control><display><type>article</type><title>A Multisensor Integration Approach toward Astronaut Navigation for Landed Lunar Missions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Rongxing ; He, Shaojun ; Skopljak, Boris ; Meng, Xuelian ; Tang, Pingbo ; Yilmaz, Alper ; Jiang, Jinwei ; Oman, Charles M. ; Banks, Martin ; Kim, Sunah</creator><creatorcontrib>Li, Rongxing ; He, Shaojun ; Skopljak, Boris ; Meng, Xuelian ; Tang, Pingbo ; Yilmaz, Alper ; Jiang, Jinwei ; Oman, Charles M. ; Banks, Martin ; Kim, Sunah</creatorcontrib><description>As experienced by Apollo lunar astronauts, spatial orientation can be affected significantly by lunar environmental conditions such as the moon's altered gravity, lack of an atmosphere, limited spatial references, and different level of reflectivity. To help overcome these challenges, a lunar astronaut navigation system called LASOIS (Lunar Astronaut Spatial Orientation and Information System) has been developed. It can significantly reduce spatial disorientation and improve real‐time navigation capability for astronauts exploring the lunar surface. LASOIS is capable of integrating satellite imagery and sensors mounted on the astronaut spacesuit (including inertial measurement units, stereo cameras, and pressure sensors) by an extended Kalman filter algorithm. The processed navigation information is presented through a wrist‐mounted display system. The system has been tested at three field experiment sites, including Moses Lake, WA, Black Lava Point, AZ, and Haleakala National Park, HI. It is demonstrated that the system has achieved an error rate (or relative accuracy) of 2.4% for astronaut navigation over a traverse of 6.1 km in a lunarlike environment.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.21488</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Astronauts ; Disorientation ; Inertial ; Lava ; Navigation ; Orientation ; Pressure sensors</subject><ispartof>Journal of field robotics, 2014-03, Vol.31 (2), p.245-262</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3288-2dc534ecf3410c9669bb8bb9479efae8c2e6114b61926ab185d791a254b2015a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.21488$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.21488$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Rongxing</creatorcontrib><creatorcontrib>He, Shaojun</creatorcontrib><creatorcontrib>Skopljak, Boris</creatorcontrib><creatorcontrib>Meng, Xuelian</creatorcontrib><creatorcontrib>Tang, Pingbo</creatorcontrib><creatorcontrib>Yilmaz, Alper</creatorcontrib><creatorcontrib>Jiang, Jinwei</creatorcontrib><creatorcontrib>Oman, Charles M.</creatorcontrib><creatorcontrib>Banks, Martin</creatorcontrib><creatorcontrib>Kim, Sunah</creatorcontrib><title>A Multisensor Integration Approach toward Astronaut Navigation for Landed Lunar Missions</title><title>Journal of field robotics</title><addtitle>J. Field Robotics</addtitle><description>As experienced by Apollo lunar astronauts, spatial orientation can be affected significantly by lunar environmental conditions such as the moon's altered gravity, lack of an atmosphere, limited spatial references, and different level of reflectivity. To help overcome these challenges, a lunar astronaut navigation system called LASOIS (Lunar Astronaut Spatial Orientation and Information System) has been developed. It can significantly reduce spatial disorientation and improve real‐time navigation capability for astronauts exploring the lunar surface. LASOIS is capable of integrating satellite imagery and sensors mounted on the astronaut spacesuit (including inertial measurement units, stereo cameras, and pressure sensors) by an extended Kalman filter algorithm. The processed navigation information is presented through a wrist‐mounted display system. The system has been tested at three field experiment sites, including Moses Lake, WA, Black Lava Point, AZ, and Haleakala National Park, HI. It is demonstrated that the system has achieved an error rate (or relative accuracy) of 2.4% for astronaut navigation over a traverse of 6.1 km in a lunarlike environment.</description><subject>Algorithms</subject><subject>Astronauts</subject><subject>Disorientation</subject><subject>Inertial</subject><subject>Lava</subject><subject>Navigation</subject><subject>Orientation</subject><subject>Pressure sensors</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwkAURRujiYgu_AdN3OiiMN-dWSJRIAIav3A3mbZTLJYOzrQi_95ilYWJq_eSd-7LzfG8Uwg6EADUtSbqIEg43_NakFIWEMHC_d1OxaF35NwCAIK5oC3vpedPqrzMnC6csf6oKPXcqjIzhd9braxR8atfmrWyid9zpTWFqkp_qj6yeQOldWisikQn_rgqlPUnmXP1wR17B6nKnT75mW3v6frqsT8MxreDUb83DmKMOA9QElNMdJxiAkEsGBNRxKNIkFDoVGkeI80gJBGDAjEVQU6TUECFKIkQgFThtnfe_K3LvlfalXKZuVjnuSq0qZyEFGLCEQ5RjZ79QRemskXdTsKtGsxAiGvqoqFia5yzOpUrmy2V3UgI5NaxrB3Lb8c1223YdZbrzf-gvL-9_E0ETSJzpf7cJZR9kyzEIZWz6UCK4cMNHdw9yxn-AuzYjIA</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Li, Rongxing</creator><creator>He, Shaojun</creator><creator>Skopljak, Boris</creator><creator>Meng, Xuelian</creator><creator>Tang, Pingbo</creator><creator>Yilmaz, Alper</creator><creator>Jiang, Jinwei</creator><creator>Oman, Charles M.</creator><creator>Banks, Martin</creator><creator>Kim, Sunah</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>201403</creationdate><title>A Multisensor Integration Approach toward Astronaut Navigation for Landed Lunar Missions</title><author>Li, Rongxing ; He, Shaojun ; Skopljak, Boris ; Meng, Xuelian ; Tang, Pingbo ; Yilmaz, Alper ; Jiang, Jinwei ; Oman, Charles M. ; Banks, Martin ; Kim, Sunah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3288-2dc534ecf3410c9669bb8bb9479efae8c2e6114b61926ab185d791a254b2015a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Astronauts</topic><topic>Disorientation</topic><topic>Inertial</topic><topic>Lava</topic><topic>Navigation</topic><topic>Orientation</topic><topic>Pressure sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Rongxing</creatorcontrib><creatorcontrib>He, Shaojun</creatorcontrib><creatorcontrib>Skopljak, Boris</creatorcontrib><creatorcontrib>Meng, Xuelian</creatorcontrib><creatorcontrib>Tang, Pingbo</creatorcontrib><creatorcontrib>Yilmaz, Alper</creatorcontrib><creatorcontrib>Jiang, Jinwei</creatorcontrib><creatorcontrib>Oman, Charles M.</creatorcontrib><creatorcontrib>Banks, Martin</creatorcontrib><creatorcontrib>Kim, Sunah</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Rongxing</au><au>He, Shaojun</au><au>Skopljak, Boris</au><au>Meng, Xuelian</au><au>Tang, Pingbo</au><au>Yilmaz, Alper</au><au>Jiang, Jinwei</au><au>Oman, Charles M.</au><au>Banks, Martin</au><au>Kim, Sunah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multisensor Integration Approach toward Astronaut Navigation for Landed Lunar Missions</atitle><jtitle>Journal of field robotics</jtitle><addtitle>J. Field Robotics</addtitle><date>2014-03</date><risdate>2014</risdate><volume>31</volume><issue>2</issue><spage>245</spage><epage>262</epage><pages>245-262</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>As experienced by Apollo lunar astronauts, spatial orientation can be affected significantly by lunar environmental conditions such as the moon's altered gravity, lack of an atmosphere, limited spatial references, and different level of reflectivity. To help overcome these challenges, a lunar astronaut navigation system called LASOIS (Lunar Astronaut Spatial Orientation and Information System) has been developed. It can significantly reduce spatial disorientation and improve real‐time navigation capability for astronauts exploring the lunar surface. LASOIS is capable of integrating satellite imagery and sensors mounted on the astronaut spacesuit (including inertial measurement units, stereo cameras, and pressure sensors) by an extended Kalman filter algorithm. The processed navigation information is presented through a wrist‐mounted display system. The system has been tested at three field experiment sites, including Moses Lake, WA, Black Lava Point, AZ, and Haleakala National Park, HI. It is demonstrated that the system has achieved an error rate (or relative accuracy) of 2.4% for astronaut navigation over a traverse of 6.1 km in a lunarlike environment.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rob.21488</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2014-03, Vol.31 (2), p.245-262
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_miscellaneous_1513482372
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Astronauts
Disorientation
Inertial
Lava
Navigation
Orientation
Pressure sensors
title A Multisensor Integration Approach toward Astronaut Navigation for Landed Lunar Missions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multisensor%20Integration%20Approach%20toward%20Astronaut%20Navigation%20for%20Landed%20Lunar%20Missions&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Li,%20Rongxing&rft.date=2014-03&rft.volume=31&rft.issue=2&rft.spage=245&rft.epage=262&rft.pages=245-262&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.21488&rft_dat=%3Cproquest_cross%3E3209487051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1495936073&rft_id=info:pmid/&rfr_iscdi=true