Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries

Nanocrystalline Silicon (Si) embedded Ni–Ti composite anode materials are synthesized by using two-stage high-energy mechanical milling (HEMM). The overall composition of the Si and NiTi (Nitinol) powders are 65 at.% and 35 at.%. The effects of crystal size, crystal structure, and microstructure on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-12, Vol.244, p.259-265
Hauptverfasser: Loka, Chadrasekhar, Yu, HoTak, Lee, Kee-Sun, Cho, JongSoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue
container_start_page 259
container_title Journal of power sources
container_volume 244
creator Loka, Chadrasekhar
Yu, HoTak
Lee, Kee-Sun
Cho, JongSoo
description Nanocrystalline Silicon (Si) embedded Ni–Ti composite anode materials are synthesized by using two-stage high-energy mechanical milling (HEMM). The overall composition of the Si and NiTi (Nitinol) powders are 65 at.% and 35 at.%. The effects of crystal size, crystal structure, and microstructure on the electrochemical properties of the nanocomposite powders are examined through X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical test and nano-indentation test. The capacities of the coin cells produced with the 6 and 10 h milled powders are 711 and 553 mAh g−1, respectively, after the 52nd cycle. The efficiencies of the coin cells produced with the 6 and 10 h milled powders continue to maintain 97.2 and 97.5%, respectively, until 52nd cycle. Coin cells produced with 10 h milled powders show relatively low capacity fading, which are attributed to the nanocomposite structure comprised of Si nanocrystals embedded into amorphous Ni–Ti matrix phase. Coin cell of 10 h milled powders reveals the reduced number of voids. Therefore, it is believed that Si embedded Ni–Ti nanocomposite using a two-stage high energy mechanical milling can be a promising candidate for high performance Si based anode materials. ► Silicon and Nitinol powder mixture was milled by high-energy mechanical milling. ► High-energy mechanical milling results formation of nanocomposite Silicon/Nitinol. ► Coin cell cross sectional microstructure presented after cycling. ► Prominent electrochemical properties obtained due to nanocomposite structure. ► 10-h milled nanocomposite exhibit stable capacity of 553 mAh g−1 after 52nd cycle.
doi_str_mv 10.1016/j.jpowsour.2013.01.107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513480069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877531300164X</els_id><sourcerecordid>1513480069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-5df32a816a28caab2cada55bdba5bcde69be9b45a6701a0992a8ca290cf141b23</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEkvpX0C-IJVDtnYSx8kNVJUWqSoH2rM1diabWSX2YmdBW_Hj8WoL155GevreG-k9xj5IsZZCNpfb9XYXfqewj-tSyGotZNb1K7aSra6KUiv1mq1EpdtCa1W9Ze9S2gohpNRixf7cgw8uzLuQaEH-gy4v7umBPvEs98hnWDASTImng19GTPSEPbcHPtJmLNBj3Bz4jG4ETw4mPtM0kd_wIUQ-0TLSfi4oeB6PSNwg2Am5heWYiuk9ezPkbDx_vmfs8ev1w9Vtcff95tvVl7vCKSmXQvVDVUIrGyhbB2BLBz0oZXsLyroem85iZ2sFjRYSRNdl2EHZCTfIWtqyOmMXp9xdDD_3mBYzU3I4TeAx7JORSlZ1K0TTvYzWdZsbVUJktDmhLoaUIg5mF2mGeDBSmOMyZmv-LWOOyxghs66z8ePzD0i5tCGCd5T-u0uta6XrJnOfTxzmbn4RRpMcoXfYU-5zMX2gl179BUTIqxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448755500</pqid></control><display><type>article</type><title>Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Loka, Chadrasekhar ; Yu, HoTak ; Lee, Kee-Sun ; Cho, JongSoo</creator><creatorcontrib>Loka, Chadrasekhar ; Yu, HoTak ; Lee, Kee-Sun ; Cho, JongSoo</creatorcontrib><description>Nanocrystalline Silicon (Si) embedded Ni–Ti composite anode materials are synthesized by using two-stage high-energy mechanical milling (HEMM). The overall composition of the Si and NiTi (Nitinol) powders are 65 at.% and 35 at.%. The effects of crystal size, crystal structure, and microstructure on the electrochemical properties of the nanocomposite powders are examined through X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical test and nano-indentation test. The capacities of the coin cells produced with the 6 and 10 h milled powders are 711 and 553 mAh g−1, respectively, after the 52nd cycle. The efficiencies of the coin cells produced with the 6 and 10 h milled powders continue to maintain 97.2 and 97.5%, respectively, until 52nd cycle. Coin cells produced with 10 h milled powders show relatively low capacity fading, which are attributed to the nanocomposite structure comprised of Si nanocrystals embedded into amorphous Ni–Ti matrix phase. Coin cell of 10 h milled powders reveals the reduced number of voids. Therefore, it is believed that Si embedded Ni–Ti nanocomposite using a two-stage high energy mechanical milling can be a promising candidate for high performance Si based anode materials. ► Silicon and Nitinol powder mixture was milled by high-energy mechanical milling. ► High-energy mechanical milling results formation of nanocomposite Silicon/Nitinol. ► Coin cell cross sectional microstructure presented after cycling. ► Prominent electrochemical properties obtained due to nanocomposite structure. ► 10-h milled nanocomposite exhibit stable capacity of 553 mAh g−1 after 52nd cycle.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.01.107</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode material ; Anodes ; Applied sciences ; Coins ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Intermetallic compounds ; Intermetallics ; Lithium-ion battery ; Materials ; Mechanical milling ; Nanocomposite ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanovoid ; Nickel base alloys ; Nickel titanides ; Shape memory alloys ; Silicon</subject><ispartof>Journal of power sources, 2013-12, Vol.244, p.259-265</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-5df32a816a28caab2cada55bdba5bcde69be9b45a6701a0992a8ca290cf141b23</citedby><cites>FETCH-LOGICAL-c511t-5df32a816a28caab2cada55bdba5bcde69be9b45a6701a0992a8ca290cf141b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037877531300164X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27745746$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loka, Chadrasekhar</creatorcontrib><creatorcontrib>Yu, HoTak</creatorcontrib><creatorcontrib>Lee, Kee-Sun</creatorcontrib><creatorcontrib>Cho, JongSoo</creatorcontrib><title>Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries</title><title>Journal of power sources</title><description>Nanocrystalline Silicon (Si) embedded Ni–Ti composite anode materials are synthesized by using two-stage high-energy mechanical milling (HEMM). The overall composition of the Si and NiTi (Nitinol) powders are 65 at.% and 35 at.%. The effects of crystal size, crystal structure, and microstructure on the electrochemical properties of the nanocomposite powders are examined through X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical test and nano-indentation test. The capacities of the coin cells produced with the 6 and 10 h milled powders are 711 and 553 mAh g−1, respectively, after the 52nd cycle. The efficiencies of the coin cells produced with the 6 and 10 h milled powders continue to maintain 97.2 and 97.5%, respectively, until 52nd cycle. Coin cells produced with 10 h milled powders show relatively low capacity fading, which are attributed to the nanocomposite structure comprised of Si nanocrystals embedded into amorphous Ni–Ti matrix phase. Coin cell of 10 h milled powders reveals the reduced number of voids. Therefore, it is believed that Si embedded Ni–Ti nanocomposite using a two-stage high energy mechanical milling can be a promising candidate for high performance Si based anode materials. ► Silicon and Nitinol powder mixture was milled by high-energy mechanical milling. ► High-energy mechanical milling results formation of nanocomposite Silicon/Nitinol. ► Coin cell cross sectional microstructure presented after cycling. ► Prominent electrochemical properties obtained due to nanocomposite structure. ► 10-h milled nanocomposite exhibit stable capacity of 553 mAh g−1 after 52nd cycle.</description><subject>Anode material</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Coins</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Lithium-ion battery</subject><subject>Materials</subject><subject>Mechanical milling</subject><subject>Nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanovoid</subject><subject>Nickel base alloys</subject><subject>Nickel titanides</subject><subject>Shape memory alloys</subject><subject>Silicon</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EEkvpX0C-IJVDtnYSx8kNVJUWqSoH2rM1diabWSX2YmdBW_Hj8WoL155GevreG-k9xj5IsZZCNpfb9XYXfqewj-tSyGotZNb1K7aSra6KUiv1mq1EpdtCa1W9Ze9S2gohpNRixf7cgw8uzLuQaEH-gy4v7umBPvEs98hnWDASTImng19GTPSEPbcHPtJmLNBj3Bz4jG4ETw4mPtM0kd_wIUQ-0TLSfi4oeB6PSNwg2Am5heWYiuk9ezPkbDx_vmfs8ev1w9Vtcff95tvVl7vCKSmXQvVDVUIrGyhbB2BLBz0oZXsLyroem85iZ2sFjRYSRNdl2EHZCTfIWtqyOmMXp9xdDD_3mBYzU3I4TeAx7JORSlZ1K0TTvYzWdZsbVUJktDmhLoaUIg5mF2mGeDBSmOMyZmv-LWOOyxghs66z8ePzD0i5tCGCd5T-u0uta6XrJnOfTxzmbn4RRpMcoXfYU-5zMX2gl179BUTIqxg</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Loka, Chadrasekhar</creator><creator>Yu, HoTak</creator><creator>Lee, Kee-Sun</creator><creator>Cho, JongSoo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131215</creationdate><title>Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries</title><author>Loka, Chadrasekhar ; Yu, HoTak ; Lee, Kee-Sun ; Cho, JongSoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-5df32a816a28caab2cada55bdba5bcde69be9b45a6701a0992a8ca290cf141b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anode material</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Coins</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Lithium-ion battery</topic><topic>Materials</topic><topic>Mechanical milling</topic><topic>Nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanovoid</topic><topic>Nickel base alloys</topic><topic>Nickel titanides</topic><topic>Shape memory alloys</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loka, Chadrasekhar</creatorcontrib><creatorcontrib>Yu, HoTak</creatorcontrib><creatorcontrib>Lee, Kee-Sun</creatorcontrib><creatorcontrib>Cho, JongSoo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loka, Chadrasekhar</au><au>Yu, HoTak</au><au>Lee, Kee-Sun</au><au>Cho, JongSoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>244</volume><spage>259</spage><epage>265</epage><pages>259-265</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Nanocrystalline Silicon (Si) embedded Ni–Ti composite anode materials are synthesized by using two-stage high-energy mechanical milling (HEMM). The overall composition of the Si and NiTi (Nitinol) powders are 65 at.% and 35 at.%. The effects of crystal size, crystal structure, and microstructure on the electrochemical properties of the nanocomposite powders are examined through X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical test and nano-indentation test. The capacities of the coin cells produced with the 6 and 10 h milled powders are 711 and 553 mAh g−1, respectively, after the 52nd cycle. The efficiencies of the coin cells produced with the 6 and 10 h milled powders continue to maintain 97.2 and 97.5%, respectively, until 52nd cycle. Coin cells produced with 10 h milled powders show relatively low capacity fading, which are attributed to the nanocomposite structure comprised of Si nanocrystals embedded into amorphous Ni–Ti matrix phase. Coin cell of 10 h milled powders reveals the reduced number of voids. Therefore, it is believed that Si embedded Ni–Ti nanocomposite using a two-stage high energy mechanical milling can be a promising candidate for high performance Si based anode materials. ► Silicon and Nitinol powder mixture was milled by high-energy mechanical milling. ► High-energy mechanical milling results formation of nanocomposite Silicon/Nitinol. ► Coin cell cross sectional microstructure presented after cycling. ► Prominent electrochemical properties obtained due to nanocomposite structure. ► 10-h milled nanocomposite exhibit stable capacity of 553 mAh g−1 after 52nd cycle.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.01.107</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-12, Vol.244, p.259-265
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1513480069
source Elsevier ScienceDirect Journals
subjects Anode material
Anodes
Applied sciences
Coins
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Intermetallic compounds
Intermetallics
Lithium-ion battery
Materials
Mechanical milling
Nanocomposite
Nanocomposites
Nanomaterials
Nanostructure
Nanovoid
Nickel base alloys
Nickel titanides
Shape memory alloys
Silicon
title Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposite%20Si/(NiTi)%20anode%20materials%20synthesized%20by%20high-energy%20mechanical%20milling%20for%20lithium-ion%20rechargeable%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Loka,%20Chadrasekhar&rft.date=2013-12-15&rft.volume=244&rft.spage=259&rft.epage=265&rft.pages=259-265&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.01.107&rft_dat=%3Cproquest_cross%3E1513480069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448755500&rft_id=info:pmid/&rft_els_id=S037877531300164X&rfr_iscdi=true