SnO2/ZnO composite structure for the lithium-ion battery electrode

In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2012-12, Vol.196, p.326-331
Hauptverfasser: Ahmad, Mashkoor, Yingying, Shi, Sun, Hongyu, Shen, Wanci, Zhu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue
container_start_page 326
container_title Journal of solid state chemistry
container_volume 196
creator Ahmad, Mashkoor
Yingying, Shi
Sun, Hongyu
Shen, Wanci
Zhu, Jing
description In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted] ► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.
doi_str_mv 10.1016/j.jssc.2012.06.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513480028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459612004070</els_id><sourcerecordid>1513480028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKdeBC_t8iVN2oIXHf6CwQ4qiJeQpV9ZStfMJBX239ux4dHTd3ne9-N9CLkGmgEFOWuzNgSTMQosozKjnJ2QCdBKpAWTn6dkQiljaS4qeU4uQmgpBRBlPiEPb_2Szb76ZWLcZuuCjZiE6AcTB49J43wS15h0Nq7tsEmt65OVjhH9LsEOTfSuxkty1ugu4NXxTsnH0-P7_CVdLJ9f5_eL1LCKx1QKWVUSmlLmmrKSNVjwppK01ljSihUcOJhVU9douAbIQUhECoUQHHLDkE_J7aF36933gCGqjQ0Gu0736IagQADPy3FoOaLsgBrvQvDYqK23G-13CqjaC1Ot2gtTe2GKSjUKG0M3x34djO4ar3tjw1-SSVEKJoqRuztwOI79sehVMBZ7g7X1oxJVO_vfm19fvYAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513480028</pqid></control><display><type>article</type><title>SnO2/ZnO composite structure for the lithium-ion battery electrode</title><source>Elsevier ScienceDirect Journals</source><creator>Ahmad, Mashkoor ; Yingying, Shi ; Sun, Hongyu ; Shen, Wanci ; Zhu, Jing</creator><creatorcontrib>Ahmad, Mashkoor ; Yingying, Shi ; Sun, Hongyu ; Shen, Wanci ; Zhu, Jing</creatorcontrib><description>In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted] ► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/j.jssc.2012.06.032</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Composite structures ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electronics ; Exact sciences and technology ; Growth from solutions ; Hydrothermal ; Lithium ; Lithium storage ; Lithium-ion batteries ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; SnO2/ZnO composite ; Specific surface ; Storage capacity ; Tin dioxide ; Tin oxides ; Zinc oxide</subject><ispartof>Journal of solid state chemistry, 2012-12, Vol.196, p.326-331</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</citedby><cites>FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022459612004070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26585257$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Mashkoor</creatorcontrib><creatorcontrib>Yingying, Shi</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Shen, Wanci</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><title>SnO2/ZnO composite structure for the lithium-ion battery electrode</title><title>Journal of solid state chemistry</title><description>In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted] ► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.</description><subject>Applied sciences</subject><subject>Composite structures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Hydrothermal</subject><subject>Lithium</subject><subject>Lithium storage</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>SnO2/ZnO composite</subject><subject>Specific surface</subject><subject>Storage capacity</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><subject>Zinc oxide</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKf_gKdeBC_t8iVN2oIXHf6CwQ4qiJeQpV9ZStfMJBX239ux4dHTd3ne9-N9CLkGmgEFOWuzNgSTMQosozKjnJ2QCdBKpAWTn6dkQiljaS4qeU4uQmgpBRBlPiEPb_2Szb76ZWLcZuuCjZiE6AcTB49J43wS15h0Nq7tsEmt65OVjhH9LsEOTfSuxkty1ugu4NXxTsnH0-P7_CVdLJ9f5_eL1LCKx1QKWVUSmlLmmrKSNVjwppK01ljSihUcOJhVU9douAbIQUhECoUQHHLDkE_J7aF36933gCGqjQ0Gu0736IagQADPy3FoOaLsgBrvQvDYqK23G-13CqjaC1Ot2gtTe2GKSjUKG0M3x34djO4ar3tjw1-SSVEKJoqRuztwOI79sehVMBZ7g7X1oxJVO_vfm19fvYAe</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ahmad, Mashkoor</creator><creator>Yingying, Shi</creator><creator>Sun, Hongyu</creator><creator>Shen, Wanci</creator><creator>Zhu, Jing</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>SnO2/ZnO composite structure for the lithium-ion battery electrode</title><author>Ahmad, Mashkoor ; Yingying, Shi ; Sun, Hongyu ; Shen, Wanci ; Zhu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Composite structures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Hydrothermal</topic><topic>Lithium</topic><topic>Lithium storage</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>SnO2/ZnO composite</topic><topic>Specific surface</topic><topic>Storage capacity</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Mashkoor</creatorcontrib><creatorcontrib>Yingying, Shi</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Shen, Wanci</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Mashkoor</au><au>Yingying, Shi</au><au>Sun, Hongyu</au><au>Shen, Wanci</au><au>Zhu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnO2/ZnO composite structure for the lithium-ion battery electrode</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>196</volume><spage>326</spage><epage>331</epage><pages>326-331</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted] ► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jssc.2012.06.032</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2012-12, Vol.196, p.326-331
issn 0022-4596
1095-726X
language eng
recordid cdi_proquest_miscellaneous_1513480028
source Elsevier ScienceDirect Journals
subjects Applied sciences
Composite structures
Cross-disciplinary physics: materials science
rheology
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electronics
Exact sciences and technology
Growth from solutions
Hydrothermal
Lithium
Lithium storage
Lithium-ion batteries
Materials science
Methods of crystal growth
physics of crystal growth
Physics
SnO2/ZnO composite
Specific surface
Storage capacity
Tin dioxide
Tin oxides
Zinc oxide
title SnO2/ZnO composite structure for the lithium-ion battery electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnO2/ZnO%20composite%20structure%20for%20the%20lithium-ion%20battery%20electrode&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Ahmad,%20Mashkoor&rft.date=2012-12-01&rft.volume=196&rft.spage=326&rft.epage=331&rft.pages=326-331&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1016/j.jssc.2012.06.032&rft_dat=%3Cproquest_cross%3E1513480028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513480028&rft_id=info:pmid/&rft_els_id=S0022459612004070&rfr_iscdi=true