SnO2/ZnO composite structure for the lithium-ion battery electrode
In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activi...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2012-12, Vol.196, p.326-331 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | |
container_start_page | 326 |
container_title | Journal of solid state chemistry |
container_volume | 196 |
creator | Ahmad, Mashkoor Yingying, Shi Sun, Hongyu Shen, Wanci Zhu, Jing |
description | In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process.
SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted]
► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures. |
doi_str_mv | 10.1016/j.jssc.2012.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513480028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459612004070</els_id><sourcerecordid>1513480028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKdeBC_t8iVN2oIXHf6CwQ4qiJeQpV9ZStfMJBX239ux4dHTd3ne9-N9CLkGmgEFOWuzNgSTMQosozKjnJ2QCdBKpAWTn6dkQiljaS4qeU4uQmgpBRBlPiEPb_2Szb76ZWLcZuuCjZiE6AcTB49J43wS15h0Nq7tsEmt65OVjhH9LsEOTfSuxkty1ugu4NXxTsnH0-P7_CVdLJ9f5_eL1LCKx1QKWVUSmlLmmrKSNVjwppK01ljSihUcOJhVU9douAbIQUhECoUQHHLDkE_J7aF36933gCGqjQ0Gu0736IagQADPy3FoOaLsgBrvQvDYqK23G-13CqjaC1Ot2gtTe2GKSjUKG0M3x34djO4ar3tjw1-SSVEKJoqRuztwOI79sehVMBZ7g7X1oxJVO_vfm19fvYAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513480028</pqid></control><display><type>article</type><title>SnO2/ZnO composite structure for the lithium-ion battery electrode</title><source>Elsevier ScienceDirect Journals</source><creator>Ahmad, Mashkoor ; Yingying, Shi ; Sun, Hongyu ; Shen, Wanci ; Zhu, Jing</creator><creatorcontrib>Ahmad, Mashkoor ; Yingying, Shi ; Sun, Hongyu ; Shen, Wanci ; Zhu, Jing</creatorcontrib><description>In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process.
SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted]
► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/j.jssc.2012.06.032</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Composite structures ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electronics ; Exact sciences and technology ; Growth from solutions ; Hydrothermal ; Lithium ; Lithium storage ; Lithium-ion batteries ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; SnO2/ZnO composite ; Specific surface ; Storage capacity ; Tin dioxide ; Tin oxides ; Zinc oxide</subject><ispartof>Journal of solid state chemistry, 2012-12, Vol.196, p.326-331</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</citedby><cites>FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022459612004070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26585257$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmad, Mashkoor</creatorcontrib><creatorcontrib>Yingying, Shi</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Shen, Wanci</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><title>SnO2/ZnO composite structure for the lithium-ion battery electrode</title><title>Journal of solid state chemistry</title><description>In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process.
SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted]
► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.</description><subject>Applied sciences</subject><subject>Composite structures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Hydrothermal</subject><subject>Lithium</subject><subject>Lithium storage</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>SnO2/ZnO composite</subject><subject>Specific surface</subject><subject>Storage capacity</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><subject>Zinc oxide</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKf_gKdeBC_t8iVN2oIXHf6CwQ4qiJeQpV9ZStfMJBX239ux4dHTd3ne9-N9CLkGmgEFOWuzNgSTMQosozKjnJ2QCdBKpAWTn6dkQiljaS4qeU4uQmgpBRBlPiEPb_2Szb76ZWLcZuuCjZiE6AcTB49J43wS15h0Nq7tsEmt65OVjhH9LsEOTfSuxkty1ugu4NXxTsnH0-P7_CVdLJ9f5_eL1LCKx1QKWVUSmlLmmrKSNVjwppK01ljSihUcOJhVU9douAbIQUhECoUQHHLDkE_J7aF36933gCGqjQ0Gu0736IagQADPy3FoOaLsgBrvQvDYqK23G-13CqjaC1Ot2gtTe2GKSjUKG0M3x34djO4ar3tjw1-SSVEKJoqRuztwOI79sehVMBZ7g7X1oxJVO_vfm19fvYAe</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ahmad, Mashkoor</creator><creator>Yingying, Shi</creator><creator>Sun, Hongyu</creator><creator>Shen, Wanci</creator><creator>Zhu, Jing</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>SnO2/ZnO composite structure for the lithium-ion battery electrode</title><author>Ahmad, Mashkoor ; Yingying, Shi ; Sun, Hongyu ; Shen, Wanci ; Zhu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6569961f864a0282fe73f960dae809273131cbfddec3a114156ee01755314c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Composite structures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Hydrothermal</topic><topic>Lithium</topic><topic>Lithium storage</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>SnO2/ZnO composite</topic><topic>Specific surface</topic><topic>Storage capacity</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Mashkoor</creatorcontrib><creatorcontrib>Yingying, Shi</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Shen, Wanci</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Mashkoor</au><au>Yingying, Shi</au><au>Sun, Hongyu</au><au>Shen, Wanci</au><au>Zhu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnO2/ZnO composite structure for the lithium-ion battery electrode</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>196</volume><spage>326</spage><epage>331</epage><pages>326-331</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>In this article, SnO2/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO2 micro-crystals, demonstrate the higher initial discharge capacity of 1540mAhg−1 with a Coulombic efficiency of 68% at a rate of 120mAhg−1 between 0.02 and 2V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497mAhg−1 is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO2 structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process.
SnO2/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. [Display omitted]
► Synthesis of SnO2/ZnO composite structures by two steps hydrothermal approach. ► Investigation of lithium storage capacity. ► Excellent lithium storage capacity and cycle life of SnO2/ZnO composite structures.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jssc.2012.06.032</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4596 |
ispartof | Journal of solid state chemistry, 2012-12, Vol.196, p.326-331 |
issn | 0022-4596 1095-726X |
language | eng |
recordid | cdi_proquest_miscellaneous_1513480028 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Composite structures Cross-disciplinary physics: materials science rheology Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electronics Exact sciences and technology Growth from solutions Hydrothermal Lithium Lithium storage Lithium-ion batteries Materials science Methods of crystal growth physics of crystal growth Physics SnO2/ZnO composite Specific surface Storage capacity Tin dioxide Tin oxides Zinc oxide |
title | SnO2/ZnO composite structure for the lithium-ion battery electrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnO2/ZnO%20composite%20structure%20for%20the%20lithium-ion%20battery%20electrode&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Ahmad,%20Mashkoor&rft.date=2012-12-01&rft.volume=196&rft.spage=326&rft.epage=331&rft.pages=326-331&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1016/j.jssc.2012.06.032&rft_dat=%3Cproquest_cross%3E1513480028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513480028&rft_id=info:pmid/&rft_els_id=S0022459612004070&rfr_iscdi=true |