Noise spectroscopy of transport properties in carbon nanotube field-effect transistors

Transport properties of single-walled carbon nanotube (CNT) structures with Pd contacts were studied using noise spectroscopy. The high values of the mobility and low noise level are characteristic of high-quality CNT material. The detailed analysis of the transport and noise properties of the CNT s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2013-03, Vol.53, p.252-259
Hauptverfasser: Sydoruk, V.A., Petrychuk, M.V., Ural, A., Bosman, G., Offenhäusser, A., Vitusevich, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue
container_start_page 252
container_title Carbon (New York)
container_volume 53
creator Sydoruk, V.A.
Petrychuk, M.V.
Ural, A.
Bosman, G.
Offenhäusser, A.
Vitusevich, S.A.
description Transport properties of single-walled carbon nanotube (CNT) structures with Pd contacts were studied using noise spectroscopy. The high values of the mobility and low noise level are characteristic of high-quality CNT material. The detailed analysis of the transport and noise properties of the CNT structure with back gate topography allows us to study the transport determined by Schottky barriers and by pure CNT channel conductivity and to establish their separate contribution to the total conductivity of the structure. It was demonstrated that at small gate overdrive the main source of flicker noise is related to the Schottky barriers of the CNT–FETs. With increasing gate voltage, the magnitude of flicker noise decreases and at a certain gate voltage it is only determined by the transport properties of carbon nanotubes with a noise level lower by one order of magnitude. In contrast to previous studies where flicker noise determined the excess noise of CNT-based structures, we registered generation–recombination noise components in our structures and studied their behavior in a wide temperature range. This allowed us to investigate the origin of traps capturing the carriers, which considerably affects the noise and transport properties of CNT structures.
doi_str_mv 10.1016/j.carbon.2012.10.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513479788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862231200869X</els_id><sourcerecordid>1513479788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-78dceaf9571e321d1aa0012a38af643b32e5f94f5d67cace6c329d95d0b49d73</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOI7-AxfdCG465tEm6UYQ8QWiG3EbMskNZKhNze0I_nszVFyqq5DLOTk33yHklNEVo0xebFbO5nUaVpwyXkYr2so9smBaiVroju2TBaVU15JzcUiOEDfl2mjWLMjrU4oIFY7gppzQpfGzSqGash1wTHmqxpxGyFMErOJQzTnVYIc0bddQhQi9ryGEYp9NEaeU8ZgcBNsjnHyfS_Jye_NyfV8_Pt89XF891q5RfKqV9g5s6FrFQHDmmbW0fMEKbYNsxFpwaEPXhNZL5awD6QTvfNd6um46r8SSnM_Pli3ft4CTeYvooO_tAGmLhrVMNKpTWv8t5VpIVWiK_0mlaNVO2sxSV-BhhmDGHN9s_jSMml03ZmNmZmbXzW5auim2s-8Ei872oYBzEX-8XHaU0bL7klzOOigMPyJkgy7C4MDHXIgbn-LvQV_nx6dW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283663573</pqid></control><display><type>article</type><title>Noise spectroscopy of transport properties in carbon nanotube field-effect transistors</title><source>Elsevier ScienceDirect Journals</source><creator>Sydoruk, V.A. ; Petrychuk, M.V. ; Ural, A. ; Bosman, G. ; Offenhäusser, A. ; Vitusevich, S.A.</creator><creatorcontrib>Sydoruk, V.A. ; Petrychuk, M.V. ; Ural, A. ; Bosman, G. ; Offenhäusser, A. ; Vitusevich, S.A.</creatorcontrib><description>Transport properties of single-walled carbon nanotube (CNT) structures with Pd contacts were studied using noise spectroscopy. The high values of the mobility and low noise level are characteristic of high-quality CNT material. The detailed analysis of the transport and noise properties of the CNT structure with back gate topography allows us to study the transport determined by Schottky barriers and by pure CNT channel conductivity and to establish their separate contribution to the total conductivity of the structure. It was demonstrated that at small gate overdrive the main source of flicker noise is related to the Schottky barriers of the CNT–FETs. With increasing gate voltage, the magnitude of flicker noise decreases and at a certain gate voltage it is only determined by the transport properties of carbon nanotubes with a noise level lower by one order of magnitude. In contrast to previous studies where flicker noise determined the excess noise of CNT-based structures, we registered generation–recombination noise components in our structures and studied their behavior in a wide temperature range. This allowed us to investigate the origin of traps capturing the carriers, which considerably affects the noise and transport properties of CNT structures.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2012.10.056</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Carbon nanotubes ; Cross-disciplinary physics: materials science; rheology ; Electric potential ; Electronics ; Exact sciences and technology ; Flicker ; Gates ; Materials science ; Molecular electronics, nanoelectronics ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Noise ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Spectroscopy ; Transport properties ; Voltage</subject><ispartof>Carbon (New York), 2013-03, Vol.53, p.252-259</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-78dceaf9571e321d1aa0012a38af643b32e5f94f5d67cace6c329d95d0b49d73</citedby><cites>FETCH-LOGICAL-c472t-78dceaf9571e321d1aa0012a38af643b32e5f94f5d67cace6c329d95d0b49d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000862231200869X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26901051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sydoruk, V.A.</creatorcontrib><creatorcontrib>Petrychuk, M.V.</creatorcontrib><creatorcontrib>Ural, A.</creatorcontrib><creatorcontrib>Bosman, G.</creatorcontrib><creatorcontrib>Offenhäusser, A.</creatorcontrib><creatorcontrib>Vitusevich, S.A.</creatorcontrib><title>Noise spectroscopy of transport properties in carbon nanotube field-effect transistors</title><title>Carbon (New York)</title><description>Transport properties of single-walled carbon nanotube (CNT) structures with Pd contacts were studied using noise spectroscopy. The high values of the mobility and low noise level are characteristic of high-quality CNT material. The detailed analysis of the transport and noise properties of the CNT structure with back gate topography allows us to study the transport determined by Schottky barriers and by pure CNT channel conductivity and to establish their separate contribution to the total conductivity of the structure. It was demonstrated that at small gate overdrive the main source of flicker noise is related to the Schottky barriers of the CNT–FETs. With increasing gate voltage, the magnitude of flicker noise decreases and at a certain gate voltage it is only determined by the transport properties of carbon nanotubes with a noise level lower by one order of magnitude. In contrast to previous studies where flicker noise determined the excess noise of CNT-based structures, we registered generation–recombination noise components in our structures and studied their behavior in a wide temperature range. This allowed us to investigate the origin of traps capturing the carriers, which considerably affects the noise and transport properties of CNT structures.</description><subject>Applied sciences</subject><subject>Carbon nanotubes</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flicker</subject><subject>Gates</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Noise</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Spectroscopy</subject><subject>Transport properties</subject><subject>Voltage</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOI7-AxfdCG465tEm6UYQ8QWiG3EbMskNZKhNze0I_nszVFyqq5DLOTk33yHklNEVo0xebFbO5nUaVpwyXkYr2so9smBaiVroju2TBaVU15JzcUiOEDfl2mjWLMjrU4oIFY7gppzQpfGzSqGash1wTHmqxpxGyFMErOJQzTnVYIc0bddQhQi9ryGEYp9NEaeU8ZgcBNsjnHyfS_Jye_NyfV8_Pt89XF891q5RfKqV9g5s6FrFQHDmmbW0fMEKbYNsxFpwaEPXhNZL5awD6QTvfNd6um46r8SSnM_Pli3ft4CTeYvooO_tAGmLhrVMNKpTWv8t5VpIVWiK_0mlaNVO2sxSV-BhhmDGHN9s_jSMml03ZmNmZmbXzW5auim2s-8Ei872oYBzEX-8XHaU0bL7klzOOigMPyJkgy7C4MDHXIgbn-LvQV_nx6dW</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Sydoruk, V.A.</creator><creator>Petrychuk, M.V.</creator><creator>Ural, A.</creator><creator>Bosman, G.</creator><creator>Offenhäusser, A.</creator><creator>Vitusevich, S.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Noise spectroscopy of transport properties in carbon nanotube field-effect transistors</title><author>Sydoruk, V.A. ; Petrychuk, M.V. ; Ural, A. ; Bosman, G. ; Offenhäusser, A. ; Vitusevich, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-78dceaf9571e321d1aa0012a38af643b32e5f94f5d67cace6c329d95d0b49d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Carbon nanotubes</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flicker</topic><topic>Gates</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Noise</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Spectroscopy</topic><topic>Transport properties</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sydoruk, V.A.</creatorcontrib><creatorcontrib>Petrychuk, M.V.</creatorcontrib><creatorcontrib>Ural, A.</creatorcontrib><creatorcontrib>Bosman, G.</creatorcontrib><creatorcontrib>Offenhäusser, A.</creatorcontrib><creatorcontrib>Vitusevich, S.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sydoruk, V.A.</au><au>Petrychuk, M.V.</au><au>Ural, A.</au><au>Bosman, G.</au><au>Offenhäusser, A.</au><au>Vitusevich, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise spectroscopy of transport properties in carbon nanotube field-effect transistors</atitle><jtitle>Carbon (New York)</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>53</volume><spage>252</spage><epage>259</epage><pages>252-259</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Transport properties of single-walled carbon nanotube (CNT) structures with Pd contacts were studied using noise spectroscopy. The high values of the mobility and low noise level are characteristic of high-quality CNT material. The detailed analysis of the transport and noise properties of the CNT structure with back gate topography allows us to study the transport determined by Schottky barriers and by pure CNT channel conductivity and to establish their separate contribution to the total conductivity of the structure. It was demonstrated that at small gate overdrive the main source of flicker noise is related to the Schottky barriers of the CNT–FETs. With increasing gate voltage, the magnitude of flicker noise decreases and at a certain gate voltage it is only determined by the transport properties of carbon nanotubes with a noise level lower by one order of magnitude. In contrast to previous studies where flicker noise determined the excess noise of CNT-based structures, we registered generation–recombination noise components in our structures and studied their behavior in a wide temperature range. This allowed us to investigate the origin of traps capturing the carriers, which considerably affects the noise and transport properties of CNT structures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2012.10.056</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2013-03, Vol.53, p.252-259
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1513479788
source Elsevier ScienceDirect Journals
subjects Applied sciences
Carbon nanotubes
Cross-disciplinary physics: materials science
rheology
Electric potential
Electronics
Exact sciences and technology
Flicker
Gates
Materials science
Molecular electronics, nanoelectronics
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Noise
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Spectroscopy
Transport properties
Voltage
title Noise spectroscopy of transport properties in carbon nanotube field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20spectroscopy%20of%20transport%20properties%20in%20carbon%20nanotube%20field-effect%20transistors&rft.jtitle=Carbon%20(New%20York)&rft.au=Sydoruk,%20V.A.&rft.date=2013-03-01&rft.volume=53&rft.spage=252&rft.epage=259&rft.pages=252-259&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2012.10.056&rft_dat=%3Cproquest_cross%3E1513479788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283663573&rft_id=info:pmid/&rft_els_id=S000862231200869X&rfr_iscdi=true