Fabrication of sub-wavelength structures on silicon dioxide
In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light throug...
Gespeichert in:
Veröffentlicht in: | Micro & nano letters 2013-10, Vol.8 (10), p.637-640 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 640 |
---|---|
container_issue | 10 |
container_start_page | 637 |
container_title | Micro & nano letters |
container_volume | 8 |
creator | Huang, Mao-Jung Tang, Yu-Hsiang Su, Jien-Yin Chu, Nien-Nan Shiao, Ming-Hua Hsiao, Chien-Nan |
description | In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window. |
doi_str_mv | 10.1049/mnl.2013.0289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513479648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3157689571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3657-44b7a00ba878e6632e3a897ae64333bac106fab0fa8d36581cfcf8b6ad42f90e3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxosoOKdH7wUR9ND50qRJiicdToVtXvQc0jTRjK6dSevcf29GPQxRT-_B-33f-_ii6BTBCAHJr5Z1NUoB4RGkPN-LBohlkAAheH9nP4yOvF8AEJayfBBdT2ThrJKtbeq4MbHvimQtP3Sl69f2Lfat61TbOe3jcPe2sirM0jafttTH0YGRldcn33MYvUzunscPyfTp_nF8M00UphlLCCmYBCgkZ1xTilONJc-Z1JRgjAupEFAjCzCSl0HAkTLK8ILKkqQmB42H0UXvu3LNe6d9K5bWK11VstZN5wXKECYsp4QH9OwHumg6V4d0AhHKSYYZ5IFKekq5xnunjVg5u5RuIxCIbZUiVCm2VYptlYGnPb-2ld78D4vZ_Ca9nQCkOQvCy15o9W6SP56c_8LO5tMd71Vp8Bfvn5Ao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468453709</pqid></control><display><type>article</type><title>Fabrication of sub-wavelength structures on silicon dioxide</title><source>Wiley-Blackwell Open Access Titles</source><creator>Huang, Mao-Jung ; Tang, Yu-Hsiang ; Su, Jien-Yin ; Chu, Nien-Nan ; Shiao, Ming-Hua ; Hsiao, Chien-Nan</creator><creatorcontrib>Huang, Mao-Jung ; Tang, Yu-Hsiang ; Su, Jien-Yin ; Chu, Nien-Nan ; Shiao, Ming-Hua ; Hsiao, Chien-Nan</creatorcontrib><description>In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2013.0289</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>antireflection coatings ; Arrays ; blank glass ; Broadband ; broadband antireflection ; etched surface ; fabrication technology ; Glass ; glass substrate ; Gold ; gold layer ; incident light transmittance ; inductively coupled plasma reactive ion etching ; infrared spectra ; insulated window ; mean reflectance ; mean transmittance ; nanodot array structure ; nanofabrication ; nanolithography ; nanosphere lithography ; Nanostructure ; nanostructured materials ; Reflectance ; Reflectivity ; silicon dioxide ; SiO2 ; size 180 nm ; size 200 A ; size 50 nm ; Special Section: Expanded Papers from NEMS 2013 ; sputter etching ; subwavelength structure fabrication ; subwavelength structure surfaces ; time 3 min ; time 30 s ; Transmittance ; visible light ; visible spectra ; wavelength 400 nm to 950 nm</subject><ispartof>Micro & nano letters, 2013-10, Vol.8 (10), p.637-640</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2013 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering & Technology Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3657-44b7a00ba878e6632e3a897ae64333bac106fab0fa8d36581cfcf8b6ad42f90e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2013.0289$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2013.0289$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2013.0289$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Huang, Mao-Jung</creatorcontrib><creatorcontrib>Tang, Yu-Hsiang</creatorcontrib><creatorcontrib>Su, Jien-Yin</creatorcontrib><creatorcontrib>Chu, Nien-Nan</creatorcontrib><creatorcontrib>Shiao, Ming-Hua</creatorcontrib><creatorcontrib>Hsiao, Chien-Nan</creatorcontrib><title>Fabrication of sub-wavelength structures on silicon dioxide</title><title>Micro & nano letters</title><description>In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.</description><subject>antireflection coatings</subject><subject>Arrays</subject><subject>blank glass</subject><subject>Broadband</subject><subject>broadband antireflection</subject><subject>etched surface</subject><subject>fabrication technology</subject><subject>Glass</subject><subject>glass substrate</subject><subject>Gold</subject><subject>gold layer</subject><subject>incident light transmittance</subject><subject>inductively coupled plasma reactive ion etching</subject><subject>infrared spectra</subject><subject>insulated window</subject><subject>mean reflectance</subject><subject>mean transmittance</subject><subject>nanodot array structure</subject><subject>nanofabrication</subject><subject>nanolithography</subject><subject>nanosphere lithography</subject><subject>Nanostructure</subject><subject>nanostructured materials</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>silicon dioxide</subject><subject>SiO2</subject><subject>size 180 nm</subject><subject>size 200 A</subject><subject>size 50 nm</subject><subject>Special Section: Expanded Papers from NEMS 2013</subject><subject>sputter etching</subject><subject>subwavelength structure fabrication</subject><subject>subwavelength structure surfaces</subject><subject>time 3 min</subject><subject>time 30 s</subject><subject>Transmittance</subject><subject>visible light</subject><subject>visible spectra</subject><subject>wavelength 400 nm to 950 nm</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFLwzAUxosoOKdH7wUR9ND50qRJiicdToVtXvQc0jTRjK6dSevcf29GPQxRT-_B-33f-_ii6BTBCAHJr5Z1NUoB4RGkPN-LBohlkAAheH9nP4yOvF8AEJayfBBdT2ThrJKtbeq4MbHvimQtP3Sl69f2Lfat61TbOe3jcPe2sirM0jafttTH0YGRldcn33MYvUzunscPyfTp_nF8M00UphlLCCmYBCgkZ1xTilONJc-Z1JRgjAupEFAjCzCSl0HAkTLK8ILKkqQmB42H0UXvu3LNe6d9K5bWK11VstZN5wXKECYsp4QH9OwHumg6V4d0AhHKSYYZ5IFKekq5xnunjVg5u5RuIxCIbZUiVCm2VYptlYGnPb-2ld78D4vZ_Ca9nQCkOQvCy15o9W6SP56c_8LO5tMd71Vp8Bfvn5Ao</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Huang, Mao-Jung</creator><creator>Tang, Yu-Hsiang</creator><creator>Su, Jien-Yin</creator><creator>Chu, Nien-Nan</creator><creator>Shiao, Ming-Hua</creator><creator>Hsiao, Chien-Nan</creator><general>The Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>201310</creationdate><title>Fabrication of sub-wavelength structures on silicon dioxide</title><author>Huang, Mao-Jung ; Tang, Yu-Hsiang ; Su, Jien-Yin ; Chu, Nien-Nan ; Shiao, Ming-Hua ; Hsiao, Chien-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3657-44b7a00ba878e6632e3a897ae64333bac106fab0fa8d36581cfcf8b6ad42f90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antireflection coatings</topic><topic>Arrays</topic><topic>blank glass</topic><topic>Broadband</topic><topic>broadband antireflection</topic><topic>etched surface</topic><topic>fabrication technology</topic><topic>Glass</topic><topic>glass substrate</topic><topic>Gold</topic><topic>gold layer</topic><topic>incident light transmittance</topic><topic>inductively coupled plasma reactive ion etching</topic><topic>infrared spectra</topic><topic>insulated window</topic><topic>mean reflectance</topic><topic>mean transmittance</topic><topic>nanodot array structure</topic><topic>nanofabrication</topic><topic>nanolithography</topic><topic>nanosphere lithography</topic><topic>Nanostructure</topic><topic>nanostructured materials</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>silicon dioxide</topic><topic>SiO2</topic><topic>size 180 nm</topic><topic>size 200 A</topic><topic>size 50 nm</topic><topic>Special Section: Expanded Papers from NEMS 2013</topic><topic>sputter etching</topic><topic>subwavelength structure fabrication</topic><topic>subwavelength structure surfaces</topic><topic>time 3 min</topic><topic>time 30 s</topic><topic>Transmittance</topic><topic>visible light</topic><topic>visible spectra</topic><topic>wavelength 400 nm to 950 nm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mao-Jung</creatorcontrib><creatorcontrib>Tang, Yu-Hsiang</creatorcontrib><creatorcontrib>Su, Jien-Yin</creatorcontrib><creatorcontrib>Chu, Nien-Nan</creatorcontrib><creatorcontrib>Shiao, Ming-Hua</creatorcontrib><creatorcontrib>Hsiao, Chien-Nan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Micro & nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Mao-Jung</au><au>Tang, Yu-Hsiang</au><au>Su, Jien-Yin</au><au>Chu, Nien-Nan</au><au>Shiao, Ming-Hua</au><au>Hsiao, Chien-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of sub-wavelength structures on silicon dioxide</atitle><jtitle>Micro & nano letters</jtitle><date>2013-10</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>637</spage><epage>640</epage><pages>637-640</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2013.0289</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1750-0443 |
ispartof | Micro & nano letters, 2013-10, Vol.8 (10), p.637-640 |
issn | 1750-0443 1750-0443 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513479648 |
source | Wiley-Blackwell Open Access Titles |
subjects | antireflection coatings Arrays blank glass Broadband broadband antireflection etched surface fabrication technology Glass glass substrate Gold gold layer incident light transmittance inductively coupled plasma reactive ion etching infrared spectra insulated window mean reflectance mean transmittance nanodot array structure nanofabrication nanolithography nanosphere lithography Nanostructure nanostructured materials Reflectance Reflectivity silicon dioxide SiO2 size 180 nm size 200 A size 50 nm Special Section: Expanded Papers from NEMS 2013 sputter etching subwavelength structure fabrication subwavelength structure surfaces time 3 min time 30 s Transmittance visible light visible spectra wavelength 400 nm to 950 nm |
title | Fabrication of sub-wavelength structures on silicon dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20sub-wavelength%20structures%20on%20silicon%20dioxide&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Huang,%20Mao-Jung&rft.date=2013-10&rft.volume=8&rft.issue=10&rft.spage=637&rft.epage=640&rft.pages=637-640&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2013.0289&rft_dat=%3Cproquest_24P%3E3157689571%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468453709&rft_id=info:pmid/&rfr_iscdi=true |