Fabrication of sub-wavelength structures on silicon dioxide

In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light throug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micro & nano letters 2013-10, Vol.8 (10), p.637-640
Hauptverfasser: Huang, Mao-Jung, Tang, Yu-Hsiang, Su, Jien-Yin, Chu, Nien-Nan, Shiao, Ming-Hua, Hsiao, Chien-Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 10
container_start_page 637
container_title Micro & nano letters
container_volume 8
creator Huang, Mao-Jung
Tang, Yu-Hsiang
Su, Jien-Yin
Chu, Nien-Nan
Shiao, Ming-Hua
Hsiao, Chien-Nan
description In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.
doi_str_mv 10.1049/mnl.2013.0289
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513479648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3157689571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3657-44b7a00ba878e6632e3a897ae64333bac106fab0fa8d36581cfcf8b6ad42f90e3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxosoOKdH7wUR9ND50qRJiicdToVtXvQc0jTRjK6dSevcf29GPQxRT-_B-33f-_ii6BTBCAHJr5Z1NUoB4RGkPN-LBohlkAAheH9nP4yOvF8AEJayfBBdT2ThrJKtbeq4MbHvimQtP3Sl69f2Lfat61TbOe3jcPe2sirM0jafttTH0YGRldcn33MYvUzunscPyfTp_nF8M00UphlLCCmYBCgkZ1xTilONJc-Z1JRgjAupEFAjCzCSl0HAkTLK8ILKkqQmB42H0UXvu3LNe6d9K5bWK11VstZN5wXKECYsp4QH9OwHumg6V4d0AhHKSYYZ5IFKekq5xnunjVg5u5RuIxCIbZUiVCm2VYptlYGnPb-2ld78D4vZ_Ca9nQCkOQvCy15o9W6SP56c_8LO5tMd71Vp8Bfvn5Ao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468453709</pqid></control><display><type>article</type><title>Fabrication of sub-wavelength structures on silicon dioxide</title><source>Wiley-Blackwell Open Access Titles</source><creator>Huang, Mao-Jung ; Tang, Yu-Hsiang ; Su, Jien-Yin ; Chu, Nien-Nan ; Shiao, Ming-Hua ; Hsiao, Chien-Nan</creator><creatorcontrib>Huang, Mao-Jung ; Tang, Yu-Hsiang ; Su, Jien-Yin ; Chu, Nien-Nan ; Shiao, Ming-Hua ; Hsiao, Chien-Nan</creatorcontrib><description>In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2013.0289</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>antireflection coatings ; Arrays ; blank glass ; Broadband ; broadband antireflection ; etched surface ; fabrication technology ; Glass ; glass substrate ; Gold ; gold layer ; incident light transmittance ; inductively coupled plasma reactive ion etching ; infrared spectra ; insulated window ; mean reflectance ; mean transmittance ; nanodot array structure ; nanofabrication ; nanolithography ; nanosphere lithography ; Nanostructure ; nanostructured materials ; Reflectance ; Reflectivity ; silicon dioxide ; SiO2 ; size 180 nm ; size 200 A ; size 50 nm ; Special Section: Expanded Papers from NEMS 2013 ; sputter etching ; subwavelength structure fabrication ; subwavelength structure surfaces ; time 3 min ; time 30 s ; Transmittance ; visible light ; visible spectra ; wavelength 400 nm to 950 nm</subject><ispartof>Micro &amp; nano letters, 2013-10, Vol.8 (10), p.637-640</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2013 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3657-44b7a00ba878e6632e3a897ae64333bac106fab0fa8d36581cfcf8b6ad42f90e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2013.0289$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2013.0289$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2013.0289$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Huang, Mao-Jung</creatorcontrib><creatorcontrib>Tang, Yu-Hsiang</creatorcontrib><creatorcontrib>Su, Jien-Yin</creatorcontrib><creatorcontrib>Chu, Nien-Nan</creatorcontrib><creatorcontrib>Shiao, Ming-Hua</creatorcontrib><creatorcontrib>Hsiao, Chien-Nan</creatorcontrib><title>Fabrication of sub-wavelength structures on silicon dioxide</title><title>Micro &amp; nano letters</title><description>In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.</description><subject>antireflection coatings</subject><subject>Arrays</subject><subject>blank glass</subject><subject>Broadband</subject><subject>broadband antireflection</subject><subject>etched surface</subject><subject>fabrication technology</subject><subject>Glass</subject><subject>glass substrate</subject><subject>Gold</subject><subject>gold layer</subject><subject>incident light transmittance</subject><subject>inductively coupled plasma reactive ion etching</subject><subject>infrared spectra</subject><subject>insulated window</subject><subject>mean reflectance</subject><subject>mean transmittance</subject><subject>nanodot array structure</subject><subject>nanofabrication</subject><subject>nanolithography</subject><subject>nanosphere lithography</subject><subject>Nanostructure</subject><subject>nanostructured materials</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>silicon dioxide</subject><subject>SiO2</subject><subject>size 180 nm</subject><subject>size 200 A</subject><subject>size 50 nm</subject><subject>Special Section: Expanded Papers from NEMS 2013</subject><subject>sputter etching</subject><subject>subwavelength structure fabrication</subject><subject>subwavelength structure surfaces</subject><subject>time 3 min</subject><subject>time 30 s</subject><subject>Transmittance</subject><subject>visible light</subject><subject>visible spectra</subject><subject>wavelength 400 nm to 950 nm</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFLwzAUxosoOKdH7wUR9ND50qRJiicdToVtXvQc0jTRjK6dSevcf29GPQxRT-_B-33f-_ii6BTBCAHJr5Z1NUoB4RGkPN-LBohlkAAheH9nP4yOvF8AEJayfBBdT2ThrJKtbeq4MbHvimQtP3Sl69f2Lfat61TbOe3jcPe2sirM0jafttTH0YGRldcn33MYvUzunscPyfTp_nF8M00UphlLCCmYBCgkZ1xTilONJc-Z1JRgjAupEFAjCzCSl0HAkTLK8ILKkqQmB42H0UXvu3LNe6d9K5bWK11VstZN5wXKECYsp4QH9OwHumg6V4d0AhHKSYYZ5IFKekq5xnunjVg5u5RuIxCIbZUiVCm2VYptlYGnPb-2ld78D4vZ_Ca9nQCkOQvCy15o9W6SP56c_8LO5tMd71Vp8Bfvn5Ao</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Huang, Mao-Jung</creator><creator>Tang, Yu-Hsiang</creator><creator>Su, Jien-Yin</creator><creator>Chu, Nien-Nan</creator><creator>Shiao, Ming-Hua</creator><creator>Hsiao, Chien-Nan</creator><general>The Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>201310</creationdate><title>Fabrication of sub-wavelength structures on silicon dioxide</title><author>Huang, Mao-Jung ; Tang, Yu-Hsiang ; Su, Jien-Yin ; Chu, Nien-Nan ; Shiao, Ming-Hua ; Hsiao, Chien-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3657-44b7a00ba878e6632e3a897ae64333bac106fab0fa8d36581cfcf8b6ad42f90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antireflection coatings</topic><topic>Arrays</topic><topic>blank glass</topic><topic>Broadband</topic><topic>broadband antireflection</topic><topic>etched surface</topic><topic>fabrication technology</topic><topic>Glass</topic><topic>glass substrate</topic><topic>Gold</topic><topic>gold layer</topic><topic>incident light transmittance</topic><topic>inductively coupled plasma reactive ion etching</topic><topic>infrared spectra</topic><topic>insulated window</topic><topic>mean reflectance</topic><topic>mean transmittance</topic><topic>nanodot array structure</topic><topic>nanofabrication</topic><topic>nanolithography</topic><topic>nanosphere lithography</topic><topic>Nanostructure</topic><topic>nanostructured materials</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>silicon dioxide</topic><topic>SiO2</topic><topic>size 180 nm</topic><topic>size 200 A</topic><topic>size 50 nm</topic><topic>Special Section: Expanded Papers from NEMS 2013</topic><topic>sputter etching</topic><topic>subwavelength structure fabrication</topic><topic>subwavelength structure surfaces</topic><topic>time 3 min</topic><topic>time 30 s</topic><topic>Transmittance</topic><topic>visible light</topic><topic>visible spectra</topic><topic>wavelength 400 nm to 950 nm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mao-Jung</creatorcontrib><creatorcontrib>Tang, Yu-Hsiang</creatorcontrib><creatorcontrib>Su, Jien-Yin</creatorcontrib><creatorcontrib>Chu, Nien-Nan</creatorcontrib><creatorcontrib>Shiao, Ming-Hua</creatorcontrib><creatorcontrib>Hsiao, Chien-Nan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Micro &amp; nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Mao-Jung</au><au>Tang, Yu-Hsiang</au><au>Su, Jien-Yin</au><au>Chu, Nien-Nan</au><au>Shiao, Ming-Hua</au><au>Hsiao, Chien-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of sub-wavelength structures on silicon dioxide</atitle><jtitle>Micro &amp; nano letters</jtitle><date>2013-10</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>637</spage><epage>640</epage><pages>637-640</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>In this reported work, nanosphere lithography (NSL) and inductively coupled plasma reactive ion etching (ICP-RIE) are combined to successfully fabricate a sub-wavelength structure (SWS) on a glass substrate, achieving broadband antireflection and increasing the transmittance of incident light through the glass. The experimental results show that the SWS surfaces with 180 nm width and 50 nm height could be fabricated onto glass. The mean reflectance of a blank glass is 5.81% in the wavelength range of 400–950 nm, 3 min of ICP-RIE combined with NSL reduce the mean reflectance to 3.5% and increases the mean transmittance from 92.3 to 94.3%. An additional coat of a 200 Å-thick gold layer on the 30 s etched surface sample reduces the transmittance in the visible light range (400–700 nm) to 36.6%, which is 2.25 times larger than that at the infrared range (700–950 nm). The proposed novel fabrication technology has the advantage of being low cost, and the fabricated nanodot array structure, which is gold coated, can be used on an insulated window.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2013.0289</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1750-0443
ispartof Micro & nano letters, 2013-10, Vol.8 (10), p.637-640
issn 1750-0443
1750-0443
language eng
recordid cdi_proquest_miscellaneous_1513479648
source Wiley-Blackwell Open Access Titles
subjects antireflection coatings
Arrays
blank glass
Broadband
broadband antireflection
etched surface
fabrication technology
Glass
glass substrate
Gold
gold layer
incident light transmittance
inductively coupled plasma reactive ion etching
infrared spectra
insulated window
mean reflectance
mean transmittance
nanodot array structure
nanofabrication
nanolithography
nanosphere lithography
Nanostructure
nanostructured materials
Reflectance
Reflectivity
silicon dioxide
SiO2
size 180 nm
size 200 A
size 50 nm
Special Section: Expanded Papers from NEMS 2013
sputter etching
subwavelength structure fabrication
subwavelength structure surfaces
time 3 min
time 30 s
Transmittance
visible light
visible spectra
wavelength 400 nm to 950 nm
title Fabrication of sub-wavelength structures on silicon dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20sub-wavelength%20structures%20on%20silicon%20dioxide&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Huang,%20Mao-Jung&rft.date=2013-10&rft.volume=8&rft.issue=10&rft.spage=637&rft.epage=640&rft.pages=637-640&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2013.0289&rft_dat=%3Cproquest_24P%3E3157689571%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468453709&rft_id=info:pmid/&rfr_iscdi=true