Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries

We have previously demonstrated polyimide (PI) gel polymer electrolyte (GPE)-based nanoencapsulation as a new surface modification strategy for high-voltage cathode materials. In this study, in an endeavor to attain a more comprehensive understanding of the PI GPE-based surface modification, effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-12, Vol.244, p.442-449
Hauptverfasser: Park, Jang-Hoon, Cho, Ju-Hyun, Lee, Eun-Ho, Kim, Ju-Myung, Lee, Sang-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue
container_start_page 442
container_title Journal of power sources
container_volume 244
creator Park, Jang-Hoon
Cho, Ju-Hyun
Lee, Eun-Ho
Kim, Ju-Myung
Lee, Sang-Young
description We have previously demonstrated polyimide (PI) gel polymer electrolyte (GPE)-based nanoencapsulation as a new surface modification strategy for high-voltage cathode materials. In this study, in an endeavor to attain a more comprehensive understanding of the PI GPE-based surface modification, effects of structural variation of PI encapsulating layers (specifically, focusing on PI coating thickness) on cell performance and thermal stability of high-voltage (4.4 V) LiCoO2 are investigated. Herein, PI coating thickness is tuned between approximately 10 and 40 nm by varying polyamic acid (synthesized from pyromellitic dianhydride/oxydianiline) concentration of coating solutions. As PI coating thickness is increased, discharge C-rate capability of cells is deteriorated due to undesired rise of ionic and electronic resistance of thick PI coating layers. On the other hand, thick PI encapsulating layers are effective in mitigating interfacial exothermic reaction between delithiated LiCoO2 and liquid electrolyte. Notably, among the various PI coating thicknesses, average thickness of 10 nm imparts well-balanced enhancement in cell performance and thermal stability. These results demonstrate that structural fine-tuning (particularly, coating thickness) of PI encapsulating layers, acting as ion-conductive protective conformal thin films, plays a significant role in optimizing their beneficial coating effects on high voltage LiCoO2. [Display omitted] ► Thickness-tunable polyimide nanoencapsulating layer is introduced on LiCoO2 surface. ► Effect of PI coating thickness on high-voltage cell performance is explored. ► PI encapsulating layer is featured with nanometer-thick, large surface coverage. ► PI coating thickness of 10 nm imparts well-balanced coating effects on 4.4 V LiCoO2. ► Beneficial coating effects can be optimized by tuning PI coating thickness.
doi_str_mv 10.1016/j.jpowsour.2012.11.111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513476436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877531201796X</els_id><sourcerecordid>1513476436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-843e044461154141d0414780fd66e69c3e8e1311eb724c9ea9572131ade65a2a3</originalsourceid><addsrcrecordid>eNqFkc-K2zAQxk1poem2r1B0KfTirMaWLefWEvoPAnvZnsVEHsdKZcmV5C15rL5hZbLd68IgidHvm2HmK4r3wLfAob09b8-z_xP9ErYVh2oLkANeFBvoZF1WsmleFhtey66UsqlfF29iPHPOASTfFH_vR6N_OYqxTIvDoyU2e3sxk-mJOXSenMY5LhaTcSdm8UIhMnQ9SyOZwIwb7JIZYt4xTdaymcLgw4Q5d5uZ_LIsJjwaa9KF-YGN5jSWD94mPBE7mL2_q5jGNPrcccJEwaCNLNdgWTGaZSpNrn3EtH5RfFu8GjJA7x7vm-Ln1y_3--_l4e7bj_3nQ6kFVKnsRE1cCNECNAIE9DyfsuND37bU7nRNHUENQEdZCb0j3DWyygnsqW2wwvqm-HitOwf_e6GY1GTiOiE68ktU0EAtZCvqNqPtFdXBxxhoUHMwE4aLAq5Wj9RZ_fdIrR4pgByQhR8ee2DUaIeQt2bik7qSUjRSrtynK0d54AdDQUVt1q33JpBOqvfmuVb_ACfBr7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513476436</pqid></control><display><type>article</type><title>Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Jang-Hoon ; Cho, Ju-Hyun ; Lee, Eun-Ho ; Kim, Ju-Myung ; Lee, Sang-Young</creator><creatorcontrib>Park, Jang-Hoon ; Cho, Ju-Hyun ; Lee, Eun-Ho ; Kim, Ju-Myung ; Lee, Sang-Young</creatorcontrib><description>We have previously demonstrated polyimide (PI) gel polymer electrolyte (GPE)-based nanoencapsulation as a new surface modification strategy for high-voltage cathode materials. In this study, in an endeavor to attain a more comprehensive understanding of the PI GPE-based surface modification, effects of structural variation of PI encapsulating layers (specifically, focusing on PI coating thickness) on cell performance and thermal stability of high-voltage (4.4 V) LiCoO2 are investigated. Herein, PI coating thickness is tuned between approximately 10 and 40 nm by varying polyamic acid (synthesized from pyromellitic dianhydride/oxydianiline) concentration of coating solutions. As PI coating thickness is increased, discharge C-rate capability of cells is deteriorated due to undesired rise of ionic and electronic resistance of thick PI coating layers. On the other hand, thick PI encapsulating layers are effective in mitigating interfacial exothermic reaction between delithiated LiCoO2 and liquid electrolyte. Notably, among the various PI coating thicknesses, average thickness of 10 nm imparts well-balanced enhancement in cell performance and thermal stability. These results demonstrate that structural fine-tuning (particularly, coating thickness) of PI encapsulating layers, acting as ion-conductive protective conformal thin films, plays a significant role in optimizing their beneficial coating effects on high voltage LiCoO2. [Display omitted] ► Thickness-tunable polyimide nanoencapsulating layer is introduced on LiCoO2 surface. ► Effect of PI coating thickness on high-voltage cell performance is explored. ► PI encapsulating layer is featured with nanometer-thick, large surface coverage. ► PI coating thickness of 10 nm imparts well-balanced coating effects on 4.4 V LiCoO2. ► Beneficial coating effects can be optimized by tuning PI coating thickness.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2012.11.111</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cathodes ; Coating ; Coating thickness ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrolytes ; Electrolytic cells ; Encapsulating ; Encapsulating layers ; Exact sciences and technology ; High-voltage cathode materials ; Lithium-ion batteries ; Materials ; Nanostructure ; Polyimide ; Polyimide resins ; Surface modification ; Thermal stability</subject><ispartof>Journal of power sources, 2013-12, Vol.244, p.442-449</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-843e044461154141d0414780fd66e69c3e8e1311eb724c9ea9572131ade65a2a3</citedby><cites>FETCH-LOGICAL-c412t-843e044461154141d0414780fd66e69c3e8e1311eb724c9ea9572131ade65a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037877531201796X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27745771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jang-Hoon</creatorcontrib><creatorcontrib>Cho, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Eun-Ho</creatorcontrib><creatorcontrib>Kim, Ju-Myung</creatorcontrib><creatorcontrib>Lee, Sang-Young</creatorcontrib><title>Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries</title><title>Journal of power sources</title><description>We have previously demonstrated polyimide (PI) gel polymer electrolyte (GPE)-based nanoencapsulation as a new surface modification strategy for high-voltage cathode materials. In this study, in an endeavor to attain a more comprehensive understanding of the PI GPE-based surface modification, effects of structural variation of PI encapsulating layers (specifically, focusing on PI coating thickness) on cell performance and thermal stability of high-voltage (4.4 V) LiCoO2 are investigated. Herein, PI coating thickness is tuned between approximately 10 and 40 nm by varying polyamic acid (synthesized from pyromellitic dianhydride/oxydianiline) concentration of coating solutions. As PI coating thickness is increased, discharge C-rate capability of cells is deteriorated due to undesired rise of ionic and electronic resistance of thick PI coating layers. On the other hand, thick PI encapsulating layers are effective in mitigating interfacial exothermic reaction between delithiated LiCoO2 and liquid electrolyte. Notably, among the various PI coating thicknesses, average thickness of 10 nm imparts well-balanced enhancement in cell performance and thermal stability. These results demonstrate that structural fine-tuning (particularly, coating thickness) of PI encapsulating layers, acting as ion-conductive protective conformal thin films, plays a significant role in optimizing their beneficial coating effects on high voltage LiCoO2. [Display omitted] ► Thickness-tunable polyimide nanoencapsulating layer is introduced on LiCoO2 surface. ► Effect of PI coating thickness on high-voltage cell performance is explored. ► PI encapsulating layer is featured with nanometer-thick, large surface coverage. ► PI coating thickness of 10 nm imparts well-balanced coating effects on 4.4 V LiCoO2. ► Beneficial coating effects can be optimized by tuning PI coating thickness.</description><subject>Applied sciences</subject><subject>Cathodes</subject><subject>Coating</subject><subject>Coating thickness</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Encapsulating</subject><subject>Encapsulating layers</subject><subject>Exact sciences and technology</subject><subject>High-voltage cathode materials</subject><subject>Lithium-ion batteries</subject><subject>Materials</subject><subject>Nanostructure</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Surface modification</subject><subject>Thermal stability</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc-K2zAQxk1poem2r1B0KfTirMaWLefWEvoPAnvZnsVEHsdKZcmV5C15rL5hZbLd68IgidHvm2HmK4r3wLfAob09b8-z_xP9ErYVh2oLkANeFBvoZF1WsmleFhtey66UsqlfF29iPHPOASTfFH_vR6N_OYqxTIvDoyU2e3sxk-mJOXSenMY5LhaTcSdm8UIhMnQ9SyOZwIwb7JIZYt4xTdaymcLgw4Q5d5uZ_LIsJjwaa9KF-YGN5jSWD94mPBE7mL2_q5jGNPrcccJEwaCNLNdgWTGaZSpNrn3EtH5RfFu8GjJA7x7vm-Ln1y_3--_l4e7bj_3nQ6kFVKnsRE1cCNECNAIE9DyfsuND37bU7nRNHUENQEdZCb0j3DWyygnsqW2wwvqm-HitOwf_e6GY1GTiOiE68ktU0EAtZCvqNqPtFdXBxxhoUHMwE4aLAq5Wj9RZ_fdIrR4pgByQhR8ee2DUaIeQt2bik7qSUjRSrtynK0d54AdDQUVt1q33JpBOqvfmuVb_ACfBr7o</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Park, Jang-Hoon</creator><creator>Cho, Ju-Hyun</creator><creator>Lee, Eun-Ho</creator><creator>Kim, Ju-Myung</creator><creator>Lee, Sang-Young</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131215</creationdate><title>Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries</title><author>Park, Jang-Hoon ; Cho, Ju-Hyun ; Lee, Eun-Ho ; Kim, Ju-Myung ; Lee, Sang-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-843e044461154141d0414780fd66e69c3e8e1311eb724c9ea9572131ade65a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Cathodes</topic><topic>Coating</topic><topic>Coating thickness</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Encapsulating</topic><topic>Encapsulating layers</topic><topic>Exact sciences and technology</topic><topic>High-voltage cathode materials</topic><topic>Lithium-ion batteries</topic><topic>Materials</topic><topic>Nanostructure</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Surface modification</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jang-Hoon</creatorcontrib><creatorcontrib>Cho, Ju-Hyun</creatorcontrib><creatorcontrib>Lee, Eun-Ho</creatorcontrib><creatorcontrib>Kim, Ju-Myung</creatorcontrib><creatorcontrib>Lee, Sang-Young</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jang-Hoon</au><au>Cho, Ju-Hyun</au><au>Lee, Eun-Ho</au><au>Kim, Ju-Myung</au><au>Lee, Sang-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>244</volume><spage>442</spage><epage>449</epage><pages>442-449</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We have previously demonstrated polyimide (PI) gel polymer electrolyte (GPE)-based nanoencapsulation as a new surface modification strategy for high-voltage cathode materials. In this study, in an endeavor to attain a more comprehensive understanding of the PI GPE-based surface modification, effects of structural variation of PI encapsulating layers (specifically, focusing on PI coating thickness) on cell performance and thermal stability of high-voltage (4.4 V) LiCoO2 are investigated. Herein, PI coating thickness is tuned between approximately 10 and 40 nm by varying polyamic acid (synthesized from pyromellitic dianhydride/oxydianiline) concentration of coating solutions. As PI coating thickness is increased, discharge C-rate capability of cells is deteriorated due to undesired rise of ionic and electronic resistance of thick PI coating layers. On the other hand, thick PI encapsulating layers are effective in mitigating interfacial exothermic reaction between delithiated LiCoO2 and liquid electrolyte. Notably, among the various PI coating thicknesses, average thickness of 10 nm imparts well-balanced enhancement in cell performance and thermal stability. These results demonstrate that structural fine-tuning (particularly, coating thickness) of PI encapsulating layers, acting as ion-conductive protective conformal thin films, plays a significant role in optimizing their beneficial coating effects on high voltage LiCoO2. [Display omitted] ► Thickness-tunable polyimide nanoencapsulating layer is introduced on LiCoO2 surface. ► Effect of PI coating thickness on high-voltage cell performance is explored. ► PI encapsulating layer is featured with nanometer-thick, large surface coverage. ► PI coating thickness of 10 nm imparts well-balanced coating effects on 4.4 V LiCoO2. ► Beneficial coating effects can be optimized by tuning PI coating thickness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2012.11.111</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-12, Vol.244, p.442-449
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1513476436
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cathodes
Coating
Coating thickness
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrolytes
Electrolytic cells
Encapsulating
Encapsulating layers
Exact sciences and technology
High-voltage cathode materials
Lithium-ion batteries
Materials
Nanostructure
Polyimide
Polyimide resins
Surface modification
Thermal stability
title Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-tunable%20polyimide%20nanoencapsulating%20layers%20and%20their%20influence%20on%20cell%20performance/thermal%20stability%20of%20high-voltage%20LiCoO2%20cathode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Park,%20Jang-Hoon&rft.date=2013-12-15&rft.volume=244&rft.spage=442&rft.epage=449&rft.pages=442-449&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2012.11.111&rft_dat=%3Cproquest_cross%3E1513476436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513476436&rft_id=info:pmid/&rft_els_id=S037877531201796X&rfr_iscdi=true