The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

•The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2013-06, Vol.99, p.166-175
Hauptverfasser: Kjelstrup, S., Vie, P.J.S., Akyalcin, L., Zefaniya, P., Pharoah, J.G., Burheim, O.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 166
container_title Electrochimica acta
container_volume 99
creator Kjelstrup, S.
Vie, P.J.S.
Akyalcin, L.
Zefaniya, P.
Pharoah, J.G.
Burheim, O.S.
description •The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes.•At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1bar hydrogen pressure and 340K, is equal to 670±50μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67J/(Kmol)) corresponds to a reversible heat release of 22kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1±5J/(Kmol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6±2kJ/mol at 340K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile.
doi_str_mv 10.1016/j.electacta.2013.03.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513472593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468613004428</els_id><sourcerecordid>1513472593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c8e66fb5641aeb2fd7e7b5b04d3f36a9749d83c258cee00057f445d2b05e64823</originalsourceid><addsrcrecordid>eNqFUdlKAzEUDaJgXb7BPPoyNZlsM4-luEFBwfocZpI7NnWWmqSW_r0Zqr4WDoTcc-56ELqhZEoJlXfrKbRgYpUwzQllU5LAxQma0EKxjBWiPEUTkpiMy0Keo4sQ1oQQJRWZIL9cAX4DqMF8YjNA0zjjoI-46i2OiXuFNjrwODGpC3Y9rvBmaPfdGBsb-_SJgDvoal_1gA20Ld65uMJxN-DV3vrhA_o_rYVwhc6aqg1w_fteoveH--X8KVu8PD7PZ4vMcFrEzBQgZVMLyWkFdd5YBaoWNeGWNUxWpeKlLZjJRWEA0j5CNZwLm9dEgORFzi7R7aHuxg9fWwhRdy6M06Uph23QVFDGVS5KdlzKJReiLBlNUnWQGj-E4KHRG--6yu81JXo0RK_1vyF6NESTBC5S5uyQCWnp73RTHcZTG7DOJ722gzta4webwZme</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464559931</pqid></control><display><type>article</type><title>The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kjelstrup, S. ; Vie, P.J.S. ; Akyalcin, L. ; Zefaniya, P. ; Pharoah, J.G. ; Burheim, O.S.</creator><creatorcontrib>Kjelstrup, S. ; Vie, P.J.S. ; Akyalcin, L. ; Zefaniya, P. ; Pharoah, J.G. ; Burheim, O.S.</creatorcontrib><description>•The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes.•At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1bar hydrogen pressure and 340K, is equal to 670±50μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67J/(Kmol)) corresponds to a reversible heat release of 22kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1±5J/(Kmol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6±2kJ/mol at 340K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2013.03.045</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anode effect ; Cathodes ; Coefficients ; Current density ; Electrodes ; Electrolytic cells ; Entropy ; Hydrogen–hydrogen PEM cell ; Membranes ; Peltier heat ; Seebeck coefficient ; Temperature profiles ; Thermal effects</subject><ispartof>Electrochimica acta, 2013-06, Vol.99, p.166-175</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c8e66fb5641aeb2fd7e7b5b04d3f36a9749d83c258cee00057f445d2b05e64823</citedby><cites>FETCH-LOGICAL-c418t-c8e66fb5641aeb2fd7e7b5b04d3f36a9749d83c258cee00057f445d2b05e64823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2013.03.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kjelstrup, S.</creatorcontrib><creatorcontrib>Vie, P.J.S.</creatorcontrib><creatorcontrib>Akyalcin, L.</creatorcontrib><creatorcontrib>Zefaniya, P.</creatorcontrib><creatorcontrib>Pharoah, J.G.</creatorcontrib><creatorcontrib>Burheim, O.S.</creatorcontrib><title>The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes</title><title>Electrochimica acta</title><description>•The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes.•At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1bar hydrogen pressure and 340K, is equal to 670±50μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67J/(Kmol)) corresponds to a reversible heat release of 22kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1±5J/(Kmol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6±2kJ/mol at 340K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile.</description><subject>Anode effect</subject><subject>Cathodes</subject><subject>Coefficients</subject><subject>Current density</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Entropy</subject><subject>Hydrogen–hydrogen PEM cell</subject><subject>Membranes</subject><subject>Peltier heat</subject><subject>Seebeck coefficient</subject><subject>Temperature profiles</subject><subject>Thermal effects</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUdlKAzEUDaJgXb7BPPoyNZlsM4-luEFBwfocZpI7NnWWmqSW_r0Zqr4WDoTcc-56ELqhZEoJlXfrKbRgYpUwzQllU5LAxQma0EKxjBWiPEUTkpiMy0Keo4sQ1oQQJRWZIL9cAX4DqMF8YjNA0zjjoI-46i2OiXuFNjrwODGpC3Y9rvBmaPfdGBsb-_SJgDvoal_1gA20Ld65uMJxN-DV3vrhA_o_rYVwhc6aqg1w_fteoveH--X8KVu8PD7PZ4vMcFrEzBQgZVMLyWkFdd5YBaoWNeGWNUxWpeKlLZjJRWEA0j5CNZwLm9dEgORFzi7R7aHuxg9fWwhRdy6M06Uph23QVFDGVS5KdlzKJReiLBlNUnWQGj-E4KHRG--6yu81JXo0RK_1vyF6NESTBC5S5uyQCWnp73RTHcZTG7DOJ722gzta4webwZme</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Kjelstrup, S.</creator><creator>Vie, P.J.S.</creator><creator>Akyalcin, L.</creator><creator>Zefaniya, P.</creator><creator>Pharoah, J.G.</creator><creator>Burheim, O.S.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes</title><author>Kjelstrup, S. ; Vie, P.J.S. ; Akyalcin, L. ; Zefaniya, P. ; Pharoah, J.G. ; Burheim, O.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c8e66fb5641aeb2fd7e7b5b04d3f36a9749d83c258cee00057f445d2b05e64823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anode effect</topic><topic>Cathodes</topic><topic>Coefficients</topic><topic>Current density</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Entropy</topic><topic>Hydrogen–hydrogen PEM cell</topic><topic>Membranes</topic><topic>Peltier heat</topic><topic>Seebeck coefficient</topic><topic>Temperature profiles</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kjelstrup, S.</creatorcontrib><creatorcontrib>Vie, P.J.S.</creatorcontrib><creatorcontrib>Akyalcin, L.</creatorcontrib><creatorcontrib>Zefaniya, P.</creatorcontrib><creatorcontrib>Pharoah, J.G.</creatorcontrib><creatorcontrib>Burheim, O.S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kjelstrup, S.</au><au>Vie, P.J.S.</au><au>Akyalcin, L.</au><au>Zefaniya, P.</au><au>Pharoah, J.G.</au><au>Burheim, O.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes</atitle><jtitle>Electrochimica acta</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>99</volume><spage>166</spage><epage>175</epage><pages>166-175</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes.•At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1bar hydrogen pressure and 340K, is equal to 670±50μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67J/(Kmol)) corresponds to a reversible heat release of 22kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1±5J/(Kmol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6±2kJ/mol at 340K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2013.03.045</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2013-06, Vol.99, p.166-175
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1513472593
source Elsevier ScienceDirect Journals Complete
subjects Anode effect
Cathodes
Coefficients
Current density
Electrodes
Electrolytic cells
Entropy
Hydrogen–hydrogen PEM cell
Membranes
Peltier heat
Seebeck coefficient
Temperature profiles
Thermal effects
title The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Seebeck%20coefficient%20and%20the%20Peltier%20effect%20in%20a%20polymer%20electrolyte%20membrane%20cell%20with%20two%20hydrogen%20electrodes&rft.jtitle=Electrochimica%20acta&rft.au=Kjelstrup,%20S.&rft.date=2013-06-01&rft.volume=99&rft.spage=166&rft.epage=175&rft.pages=166-175&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2013.03.045&rft_dat=%3Cproquest_cross%3E1513472593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464559931&rft_id=info:pmid/&rft_els_id=S0013468613004428&rfr_iscdi=true