The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes
•The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2013-06, Vol.99, p.166-175 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements.•When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes.•At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode.
We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1bar hydrogen pressure and 340K, is equal to 670±50μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67J/(Kmol)) corresponds to a reversible heat release of 22kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1±5J/(Kmol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6±2kJ/mol at 340K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2013.03.045 |