Grouping real functions defined on 3D surfaces

Scalar functions are widely used to support shape analysis and description. Their role is to sift the most significant shape information and to discard the irrelevant one, acting as a filter for the characteristics that will contribute to the description. Unfortunately, a single property, or functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & graphics 2013-10, Vol.37 (6), p.608-619
Hauptverfasser: Biasotti, Silvia, Spagnuolo, Michela, Falcidieno, Bianca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 6
container_start_page 608
container_title Computers & graphics
container_volume 37
creator Biasotti, Silvia
Spagnuolo, Michela
Falcidieno, Bianca
description Scalar functions are widely used to support shape analysis and description. Their role is to sift the most significant shape information and to discard the irrelevant one, acting as a filter for the characteristics that will contribute to the description. Unfortunately, a single property, or function, is not sufficient to characterize a shape and there is not a method to automatically select the functions that better describe a 3D object. Given a set of scalar functions defined on the same object, in this paper we propose a practical approach to automatically group these functions and select a subset of functions that are as much as possible independent of each other. Experiments are exhibited for several datasets to show the suitability of the method to improve and simplify shape analysis and classification issues. [Display omitted] •Grouping sets of scalar functions according to their behaviour over a shape, or a shape class.•Selection of functions that are as much as possible selection independent.•Use of a clustering technique to learn representative functions.
doi_str_mv 10.1016/j.cag.2013.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513465256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097849313000812</els_id><sourcerecordid>1513465256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8b9189dffc23a9d3d049b253246348bb835c1e490e9c0ee42726a72bda355b6d3</originalsourceid><addsrcrecordid>eNqFkE9LwzAchoMoOKcfwFsvgpfW_G0SPMnUKQy86DmkyS8jo2tn0gp-ezs2POrpvTzv-8KD0DXBFcGkvttUzq4rigmrsKgwlidoRpRkpawVP0UzjLUsFdfsHF3kvMEYU1rzGaqWqR93sVsXCWxbhLFzQ-y7XHgIsQNf9F3BHos8pmAd5Et0Fmyb4eqYc_Tx_PS-eClXb8vXxcOqdEyzoVSNJkr7EBxlVnvmMdcNFYzymnHVNIoJR4BrDNphAE4lra2kjbdMiKb2bI5uD7u71H-OkAezjdlB29oO-jEbIgjjtaCi_h_lfPJAtFITSg6oS33OCYLZpbi16dsQbPYazcZMGs1eo8HCTBqnzs1x3mZn25Bs52L-LVIpqWKMTNz9gYNJy1eEZLKL0DnwMYEbjO_jHy8_V5GE8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448731988</pqid></control><display><type>article</type><title>Grouping real functions defined on 3D surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Biasotti, Silvia ; Spagnuolo, Michela ; Falcidieno, Bianca</creator><creatorcontrib>Biasotti, Silvia ; Spagnuolo, Michela ; Falcidieno, Bianca</creatorcontrib><description>Scalar functions are widely used to support shape analysis and description. Their role is to sift the most significant shape information and to discard the irrelevant one, acting as a filter for the characteristics that will contribute to the description. Unfortunately, a single property, or function, is not sufficient to characterize a shape and there is not a method to automatically select the functions that better describe a 3D object. Given a set of scalar functions defined on the same object, in this paper we propose a practical approach to automatically group these functions and select a subset of functions that are as much as possible independent of each other. Experiments are exhibited for several datasets to show the suitability of the method to improve and simplify shape analysis and classification issues. [Display omitted] •Grouping sets of scalar functions according to their behaviour over a shape, or a shape class.•Selection of functions that are as much as possible selection independent.•Use of a clustering technique to learn representative functions.</description><identifier>ISSN: 0097-8493</identifier><identifier>EISSN: 1873-7684</identifier><identifier>DOI: 10.1016/j.cag.2013.05.007</identifier><identifier>CODEN: COGRD2</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Classification ; Clustering ; Computer graphics ; Computer science; control theory; systems ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Pattern recognition. Digital image processing. Computational geometry ; Scalar functions ; Scalars ; Shape classification ; Shape description ; Three dimensional</subject><ispartof>Computers &amp; graphics, 2013-10, Vol.37 (6), p.608-619</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8b9189dffc23a9d3d049b253246348bb835c1e490e9c0ee42726a72bda355b6d3</citedby><cites>FETCH-LOGICAL-c393t-8b9189dffc23a9d3d049b253246348bb835c1e490e9c0ee42726a72bda355b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0097849313000812$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23911,23912,25120,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27728331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Biasotti, Silvia</creatorcontrib><creatorcontrib>Spagnuolo, Michela</creatorcontrib><creatorcontrib>Falcidieno, Bianca</creatorcontrib><title>Grouping real functions defined on 3D surfaces</title><title>Computers &amp; graphics</title><description>Scalar functions are widely used to support shape analysis and description. Their role is to sift the most significant shape information and to discard the irrelevant one, acting as a filter for the characteristics that will contribute to the description. Unfortunately, a single property, or function, is not sufficient to characterize a shape and there is not a method to automatically select the functions that better describe a 3D object. Given a set of scalar functions defined on the same object, in this paper we propose a practical approach to automatically group these functions and select a subset of functions that are as much as possible independent of each other. Experiments are exhibited for several datasets to show the suitability of the method to improve and simplify shape analysis and classification issues. [Display omitted] •Grouping sets of scalar functions according to their behaviour over a shape, or a shape class.•Selection of functions that are as much as possible selection independent.•Use of a clustering technique to learn representative functions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer graphics</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Scalar functions</subject><subject>Scalars</subject><subject>Shape classification</subject><subject>Shape description</subject><subject>Three dimensional</subject><issn>0097-8493</issn><issn>1873-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAchoMoOKcfwFsvgpfW_G0SPMnUKQy86DmkyS8jo2tn0gp-ezs2POrpvTzv-8KD0DXBFcGkvttUzq4rigmrsKgwlidoRpRkpawVP0UzjLUsFdfsHF3kvMEYU1rzGaqWqR93sVsXCWxbhLFzQ-y7XHgIsQNf9F3BHos8pmAd5Et0Fmyb4eqYc_Tx_PS-eClXb8vXxcOqdEyzoVSNJkr7EBxlVnvmMdcNFYzymnHVNIoJR4BrDNphAE4lra2kjbdMiKb2bI5uD7u71H-OkAezjdlB29oO-jEbIgjjtaCi_h_lfPJAtFITSg6oS33OCYLZpbi16dsQbPYazcZMGs1eo8HCTBqnzs1x3mZn25Bs52L-LVIpqWKMTNz9gYNJy1eEZLKL0DnwMYEbjO_jHy8_V5GE8Q</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Biasotti, Silvia</creator><creator>Spagnuolo, Michela</creator><creator>Falcidieno, Bianca</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131001</creationdate><title>Grouping real functions defined on 3D surfaces</title><author>Biasotti, Silvia ; Spagnuolo, Michela ; Falcidieno, Bianca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8b9189dffc23a9d3d049b253246348bb835c1e490e9c0ee42726a72bda355b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer graphics</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Scalar functions</topic><topic>Scalars</topic><topic>Shape classification</topic><topic>Shape description</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biasotti, Silvia</creatorcontrib><creatorcontrib>Spagnuolo, Michela</creatorcontrib><creatorcontrib>Falcidieno, Bianca</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biasotti, Silvia</au><au>Spagnuolo, Michela</au><au>Falcidieno, Bianca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grouping real functions defined on 3D surfaces</atitle><jtitle>Computers &amp; graphics</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>37</volume><issue>6</issue><spage>608</spage><epage>619</epage><pages>608-619</pages><issn>0097-8493</issn><eissn>1873-7684</eissn><coden>COGRD2</coden><abstract>Scalar functions are widely used to support shape analysis and description. Their role is to sift the most significant shape information and to discard the irrelevant one, acting as a filter for the characteristics that will contribute to the description. Unfortunately, a single property, or function, is not sufficient to characterize a shape and there is not a method to automatically select the functions that better describe a 3D object. Given a set of scalar functions defined on the same object, in this paper we propose a practical approach to automatically group these functions and select a subset of functions that are as much as possible independent of each other. Experiments are exhibited for several datasets to show the suitability of the method to improve and simplify shape analysis and classification issues. [Display omitted] •Grouping sets of scalar functions according to their behaviour over a shape, or a shape class.•Selection of functions that are as much as possible selection independent.•Use of a clustering technique to learn representative functions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cag.2013.05.007</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-8493
ispartof Computers & graphics, 2013-10, Vol.37 (6), p.608-619
issn 0097-8493
1873-7684
language eng
recordid cdi_proquest_miscellaneous_1513465256
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Classification
Clustering
Computer graphics
Computer science
control theory
systems
Exact sciences and technology
Mathematical analysis
Mathematical models
Pattern recognition. Digital image processing. Computational geometry
Scalar functions
Scalars
Shape classification
Shape description
Three dimensional
title Grouping real functions defined on 3D surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grouping%20real%20functions%20defined%20on%203D%20surfaces&rft.jtitle=Computers%20&%20graphics&rft.au=Biasotti,%20Silvia&rft.date=2013-10-01&rft.volume=37&rft.issue=6&rft.spage=608&rft.epage=619&rft.pages=608-619&rft.issn=0097-8493&rft.eissn=1873-7684&rft.coden=COGRD2&rft_id=info:doi/10.1016/j.cag.2013.05.007&rft_dat=%3Cproquest_cross%3E1513465256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448731988&rft_id=info:pmid/&rft_els_id=S0097849313000812&rfr_iscdi=true