Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms

•A GA-based method to improve reliability of distribution systems by reconfiguration.•Two objective functions proposed to address power quality and reliability issues.•The effectiveness is investigated on two standard test distribution systems.•Application results are promising when compared with ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems 2014-01, Vol.54, p.664-671
Hauptverfasser: Gupta, Nikhil, Swarnkar, Anil, Niazi, K.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue
container_start_page 664
container_title International journal of electrical power & energy systems
container_volume 54
creator Gupta, Nikhil
Swarnkar, Anil
Niazi, K.R.
description •A GA-based method to improve reliability of distribution systems by reconfiguration.•Two objective functions proposed to address power quality and reliability issues.•The effectiveness is investigated on two standard test distribution systems.•Application results are promising when compared with other existing method. This paper presents an efficient Genetic Algorithms (GAs) based method to improve the reliability and power quality of distribution systems using network reconfiguration. Two new objective functions are formulated to address power quality and reliability issues for the reconfiguration problem. Various power quality and reliability objectives such as feeder power loss, system’s node voltage deviation, system’s average interruption frequency index, system’s average interruption unavailability index and energy not supplied are transformed into a single objective function. This single objective problem is then solved using the GA-based method. The effectiveness of the proposed objective functions has been investigated on two different standard test distribution systems. Application results are promising when compared with other existing method.
doi_str_mv 10.1016/j.ijepes.2013.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513462744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142061513003578</els_id><sourcerecordid>1513462744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-96e067951a643cc4685e0b7ee3111b82f154d534194e16b30a78d59a58894fdb3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EEkvhG3DIBYlLUk_i2PEFqSpQkCpxgbPlOJNltom9tZ1W_fa43YpjT6N5-r358xj7CLwBDvL80NABj5ialkPX8KEp4iu2g0HpuutBvWY7DqKtuYT-LXuX0oFzrrRod-zmK6UcadwyBV95zPch3lQRXfAz7bdon_Q5xOoY7jFWt5tdKD9U1k-FWsiO9NTTeozhDlf0udoS-X11hWUauepi2YdI-e-a3rM3s10SfniuZ-zP92-_L3_U17-ufl5eXNeukzrXWiKXSvdgpeicE3LokY8KsQOAcWhn6MXUdwK0QJBjx60apl7bfhi0mKexO2OfT3PLSbcbpmxWSg6XxXoMWzLQQydkq4QoqDihLoaUIs7mGGm18cEAN4_ZmoM5ZWseszV8MEUstk_PG2xydpmj9Y7Sf2-rlNbAdeG-nDgs794RRpMcoXc4UYk4mynQy4v-AQTFk3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513462744</pqid></control><display><type>article</type><title>Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gupta, Nikhil ; Swarnkar, Anil ; Niazi, K.R.</creator><creatorcontrib>Gupta, Nikhil ; Swarnkar, Anil ; Niazi, K.R.</creatorcontrib><description>•A GA-based method to improve reliability of distribution systems by reconfiguration.•Two objective functions proposed to address power quality and reliability issues.•The effectiveness is investigated on two standard test distribution systems.•Application results are promising when compared with other existing method. This paper presents an efficient Genetic Algorithms (GAs) based method to improve the reliability and power quality of distribution systems using network reconfiguration. Two new objective functions are formulated to address power quality and reliability issues for the reconfiguration problem. Various power quality and reliability objectives such as feeder power loss, system’s node voltage deviation, system’s average interruption frequency index, system’s average interruption unavailability index and energy not supplied are transformed into a single objective function. This single objective problem is then solved using the GA-based method. The effectiveness of the proposed objective functions has been investigated on two different standard test distribution systems. Application results are promising when compared with other existing method.</description><identifier>ISSN: 0142-0615</identifier><identifier>EISSN: 1879-3517</identifier><identifier>DOI: 10.1016/j.ijepes.2013.08.016</identifier><identifier>CODEN: IEPSDC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Deviation ; Distribution network ; Electric potential ; Electric power generation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; Genetic Algorithms ; Interruption ; Miscellaneous ; Networks ; Operation. Load control. Reliability ; Power electronics, power supplies ; Power networks and lines ; Power quality ; Reconfiguration ; Reliability ; Voltage</subject><ispartof>International journal of electrical power &amp; energy systems, 2014-01, Vol.54, p.664-671</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-96e067951a643cc4685e0b7ee3111b82f154d534194e16b30a78d59a58894fdb3</citedby><cites>FETCH-LOGICAL-c369t-96e067951a643cc4685e0b7ee3111b82f154d534194e16b30a78d59a58894fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijepes.2013.08.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27799109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Nikhil</creatorcontrib><creatorcontrib>Swarnkar, Anil</creatorcontrib><creatorcontrib>Niazi, K.R.</creatorcontrib><title>Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms</title><title>International journal of electrical power &amp; energy systems</title><description>•A GA-based method to improve reliability of distribution systems by reconfiguration.•Two objective functions proposed to address power quality and reliability issues.•The effectiveness is investigated on two standard test distribution systems.•Application results are promising when compared with other existing method. This paper presents an efficient Genetic Algorithms (GAs) based method to improve the reliability and power quality of distribution systems using network reconfiguration. Two new objective functions are formulated to address power quality and reliability issues for the reconfiguration problem. Various power quality and reliability objectives such as feeder power loss, system’s node voltage deviation, system’s average interruption frequency index, system’s average interruption unavailability index and energy not supplied are transformed into a single objective function. This single objective problem is then solved using the GA-based method. The effectiveness of the proposed objective functions has been investigated on two different standard test distribution systems. Application results are promising when compared with other existing method.</description><subject>Applied sciences</subject><subject>Deviation</subject><subject>Distribution network</subject><subject>Electric potential</subject><subject>Electric power generation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithms</subject><subject>Interruption</subject><subject>Miscellaneous</subject><subject>Networks</subject><subject>Operation. Load control. Reliability</subject><subject>Power electronics, power supplies</subject><subject>Power networks and lines</subject><subject>Power quality</subject><subject>Reconfiguration</subject><subject>Reliability</subject><subject>Voltage</subject><issn>0142-0615</issn><issn>1879-3517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxS0EEkvhG3DIBYlLUk_i2PEFqSpQkCpxgbPlOJNltom9tZ1W_fa43YpjT6N5-r358xj7CLwBDvL80NABj5ialkPX8KEp4iu2g0HpuutBvWY7DqKtuYT-LXuX0oFzrrRod-zmK6UcadwyBV95zPch3lQRXfAz7bdon_Q5xOoY7jFWt5tdKD9U1k-FWsiO9NTTeozhDlf0udoS-X11hWUauepi2YdI-e-a3rM3s10SfniuZ-zP92-_L3_U17-ufl5eXNeukzrXWiKXSvdgpeicE3LokY8KsQOAcWhn6MXUdwK0QJBjx60apl7bfhi0mKexO2OfT3PLSbcbpmxWSg6XxXoMWzLQQydkq4QoqDihLoaUIs7mGGm18cEAN4_ZmoM5ZWseszV8MEUstk_PG2xydpmj9Y7Sf2-rlNbAdeG-nDgs794RRpMcoXc4UYk4mynQy4v-AQTFk3E</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Gupta, Nikhil</creator><creator>Swarnkar, Anil</creator><creator>Niazi, K.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms</title><author>Gupta, Nikhil ; Swarnkar, Anil ; Niazi, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-96e067951a643cc4685e0b7ee3111b82f154d534194e16b30a78d59a58894fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Deviation</topic><topic>Distribution network</topic><topic>Electric potential</topic><topic>Electric power generation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithms</topic><topic>Interruption</topic><topic>Miscellaneous</topic><topic>Networks</topic><topic>Operation. Load control. Reliability</topic><topic>Power electronics, power supplies</topic><topic>Power networks and lines</topic><topic>Power quality</topic><topic>Reconfiguration</topic><topic>Reliability</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Nikhil</creatorcontrib><creatorcontrib>Swarnkar, Anil</creatorcontrib><creatorcontrib>Niazi, K.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of electrical power &amp; energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Nikhil</au><au>Swarnkar, Anil</au><au>Niazi, K.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms</atitle><jtitle>International journal of electrical power &amp; energy systems</jtitle><date>2014-01</date><risdate>2014</risdate><volume>54</volume><spage>664</spage><epage>671</epage><pages>664-671</pages><issn>0142-0615</issn><eissn>1879-3517</eissn><coden>IEPSDC</coden><abstract>•A GA-based method to improve reliability of distribution systems by reconfiguration.•Two objective functions proposed to address power quality and reliability issues.•The effectiveness is investigated on two standard test distribution systems.•Application results are promising when compared with other existing method. This paper presents an efficient Genetic Algorithms (GAs) based method to improve the reliability and power quality of distribution systems using network reconfiguration. Two new objective functions are formulated to address power quality and reliability issues for the reconfiguration problem. Various power quality and reliability objectives such as feeder power loss, system’s node voltage deviation, system’s average interruption frequency index, system’s average interruption unavailability index and energy not supplied are transformed into a single objective function. This single objective problem is then solved using the GA-based method. The effectiveness of the proposed objective functions has been investigated on two different standard test distribution systems. Application results are promising when compared with other existing method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijepes.2013.08.016</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-0615
ispartof International journal of electrical power & energy systems, 2014-01, Vol.54, p.664-671
issn 0142-0615
1879-3517
language eng
recordid cdi_proquest_miscellaneous_1513462744
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Deviation
Distribution network
Electric potential
Electric power generation
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
Genetic Algorithms
Interruption
Miscellaneous
Networks
Operation. Load control. Reliability
Power electronics, power supplies
Power networks and lines
Power quality
Reconfiguration
Reliability
Voltage
title Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20network%20reconfiguration%20for%20power%20quality%20and%20reliability%20improvement%20using%20Genetic%20Algorithms&rft.jtitle=International%20journal%20of%20electrical%20power%20&%20energy%20systems&rft.au=Gupta,%20Nikhil&rft.date=2014-01&rft.volume=54&rft.spage=664&rft.epage=671&rft.pages=664-671&rft.issn=0142-0615&rft.eissn=1879-3517&rft.coden=IEPSDC&rft_id=info:doi/10.1016/j.ijepes.2013.08.016&rft_dat=%3Cproquest_cross%3E1513462744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513462744&rft_id=info:pmid/&rft_els_id=S0142061513003578&rfr_iscdi=true