Piezoelectrically actuated diamond cantilevers for high-frequency applications
In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2013-09, Vol.38, p.69-72 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 69 |
container_title | Diamond and related materials |
container_volume | 38 |
creator | Heidrich, N. Zuerbig, V. Iankov, D. Pletschen, W. Sah, R.E. Raynor, B. Kirste, L. Nebel, C.E. Ambacher, O. Lebedev, V. |
description | In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used.
•Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing. |
doi_str_mv | 10.1016/j.diamond.2013.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513461958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963513001349</els_id><sourcerecordid>1513461958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-7896c7d8e1371c29da9752fcd09f0535fa7a8e1f74a5535110e2a919bc6bda533</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWD9-grAXwcuumWSTNCcR8QtEPeg5pMnEpmx3a7IV9Neb0uLV0xDmeWfCM4ScAW2AgrxcND7a5dD7hlHgDZUNBbFHJjBVuqZUsn0yoZqJWksuDslRzgtKgekWJuT5NeLPgB26MUVnu-67sm5c2xF9tZtaOduPscMvTLkKQ6rm8WNeh4Sfa-xd4VerrkTHOPT5hBwE22U83dVj8n53-3bzUD-93D_eXD_Vjgs-1mqqpVN-isAVOKa91Uqw4DzVgQouglW2NINqrShPAIrMatAzJ2feCs6PycV27ioN5Rt5NMuYHXad7XFYZwMCeCtBi-n_aCtb0UoKG1RsUZeGnBMGs0pxadO3AWo2qs3C7KSYjWpDpSmqS-58t8Lm4jAk27uY_8JMKabLGQp3teWwqPmKmEx2sThEH1M5gPFD_GfTL12Kl5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464546018</pqid></control><display><type>article</type><title>Piezoelectrically actuated diamond cantilevers for high-frequency applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Heidrich, N. ; Zuerbig, V. ; Iankov, D. ; Pletschen, W. ; Sah, R.E. ; Raynor, B. ; Kirste, L. ; Nebel, C.E. ; Ambacher, O. ; Lebedev, V.</creator><creatorcontrib>Heidrich, N. ; Zuerbig, V. ; Iankov, D. ; Pletschen, W. ; Sah, R.E. ; Raynor, B. ; Kirste, L. ; Nebel, C.E. ; Ambacher, O. ; Lebedev, V.</creatorcontrib><description>In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used.
•Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2013.06.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum nitride (AlN) ; Applied sciences ; Cantilever beams ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Devices ; Diamonds ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electrodes ; Electron and ion emission by liquids and solids; impact phenomena ; Electronics ; Exact sciences and technology ; Field emission ; Field emission, ionization, evaporation, and desorption ; Fullerenes and related materials; diamonds, graphite ; Materials science ; Mechanical property characterization ; Micro electromechanical systems (MEMS) ; Modulation ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanocrystalline diamond ; Nanomaterials ; Nanostructure ; Oscillations ; p-type doping ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials</subject><ispartof>Diamond and related materials, 2013-09, Vol.38, p.69-72</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-7896c7d8e1371c29da9752fcd09f0535fa7a8e1f74a5535110e2a919bc6bda533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2013.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27729062$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heidrich, N.</creatorcontrib><creatorcontrib>Zuerbig, V.</creatorcontrib><creatorcontrib>Iankov, D.</creatorcontrib><creatorcontrib>Pletschen, W.</creatorcontrib><creatorcontrib>Sah, R.E.</creatorcontrib><creatorcontrib>Raynor, B.</creatorcontrib><creatorcontrib>Kirste, L.</creatorcontrib><creatorcontrib>Nebel, C.E.</creatorcontrib><creatorcontrib>Ambacher, O.</creatorcontrib><creatorcontrib>Lebedev, V.</creatorcontrib><title>Piezoelectrically actuated diamond cantilevers for high-frequency applications</title><title>Diamond and related materials</title><description>In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used.
•Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.</description><subject>Aluminum nitride (AlN)</subject><subject>Applied sciences</subject><subject>Cantilever beams</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Diamonds</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electrodes</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Field emission</subject><subject>Field emission, ionization, evaporation, and desorption</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials science</subject><subject>Mechanical property characterization</subject><subject>Micro electromechanical systems (MEMS)</subject><subject>Modulation</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanocrystalline diamond</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oscillations</subject><subject>p-type doping</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWD9-grAXwcuumWSTNCcR8QtEPeg5pMnEpmx3a7IV9Neb0uLV0xDmeWfCM4ScAW2AgrxcND7a5dD7hlHgDZUNBbFHJjBVuqZUsn0yoZqJWksuDslRzgtKgekWJuT5NeLPgB26MUVnu-67sm5c2xF9tZtaOduPscMvTLkKQ6rm8WNeh4Sfa-xd4VerrkTHOPT5hBwE22U83dVj8n53-3bzUD-93D_eXD_Vjgs-1mqqpVN-isAVOKa91Uqw4DzVgQouglW2NINqrShPAIrMatAzJ2feCs6PycV27ioN5Rt5NMuYHXad7XFYZwMCeCtBi-n_aCtb0UoKG1RsUZeGnBMGs0pxadO3AWo2qs3C7KSYjWpDpSmqS-58t8Lm4jAk27uY_8JMKabLGQp3teWwqPmKmEx2sThEH1M5gPFD_GfTL12Kl5M</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Heidrich, N.</creator><creator>Zuerbig, V.</creator><creator>Iankov, D.</creator><creator>Pletschen, W.</creator><creator>Sah, R.E.</creator><creator>Raynor, B.</creator><creator>Kirste, L.</creator><creator>Nebel, C.E.</creator><creator>Ambacher, O.</creator><creator>Lebedev, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Piezoelectrically actuated diamond cantilevers for high-frequency applications</title><author>Heidrich, N. ; Zuerbig, V. ; Iankov, D. ; Pletschen, W. ; Sah, R.E. ; Raynor, B. ; Kirste, L. ; Nebel, C.E. ; Ambacher, O. ; Lebedev, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-7896c7d8e1371c29da9752fcd09f0535fa7a8e1f74a5535110e2a919bc6bda533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum nitride (AlN)</topic><topic>Applied sciences</topic><topic>Cantilever beams</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Diamonds</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electrodes</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Field emission</topic><topic>Field emission, ionization, evaporation, and desorption</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials science</topic><topic>Mechanical property characterization</topic><topic>Micro electromechanical systems (MEMS)</topic><topic>Modulation</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanocrystalline diamond</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oscillations</topic><topic>p-type doping</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidrich, N.</creatorcontrib><creatorcontrib>Zuerbig, V.</creatorcontrib><creatorcontrib>Iankov, D.</creatorcontrib><creatorcontrib>Pletschen, W.</creatorcontrib><creatorcontrib>Sah, R.E.</creatorcontrib><creatorcontrib>Raynor, B.</creatorcontrib><creatorcontrib>Kirste, L.</creatorcontrib><creatorcontrib>Nebel, C.E.</creatorcontrib><creatorcontrib>Ambacher, O.</creatorcontrib><creatorcontrib>Lebedev, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidrich, N.</au><au>Zuerbig, V.</au><au>Iankov, D.</au><au>Pletschen, W.</au><au>Sah, R.E.</au><au>Raynor, B.</au><au>Kirste, L.</au><au>Nebel, C.E.</au><au>Ambacher, O.</au><au>Lebedev, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectrically actuated diamond cantilevers for high-frequency applications</atitle><jtitle>Diamond and related materials</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>38</volume><spage>69</spage><epage>72</epage><pages>69-72</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used.
•Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2013.06.015</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2013-09, Vol.38, p.69-72 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513461958 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum nitride (AlN) Applied sciences Cantilever beams Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Devices Diamonds Dielectric, piezoelectric, ferroelectric and antiferroelectric materials Dielectrics, piezoelectrics, and ferroelectrics and their properties Electrodes Electron and ion emission by liquids and solids impact phenomena Electronics Exact sciences and technology Field emission Field emission, ionization, evaporation, and desorption Fullerenes and related materials diamonds, graphite Materials science Mechanical property characterization Micro electromechanical systems (MEMS) Modulation Molecular electronics, nanoelectronics Nanocomposites Nanocrystalline diamond Nanomaterials Nanostructure Oscillations p-type doping Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials |
title | Piezoelectrically actuated diamond cantilevers for high-frequency applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectrically%20actuated%20diamond%20cantilevers%20for%20high-frequency%20applications&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Heidrich,%20N.&rft.date=2013-09-01&rft.volume=38&rft.spage=69&rft.epage=72&rft.pages=69-72&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2013.06.015&rft_dat=%3Cproquest_cross%3E1513461958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464546018&rft_id=info:pmid/&rft_els_id=S0925963513001349&rfr_iscdi=true |