Piezoelectrically actuated diamond cantilevers for high-frequency applications

In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2013-09, Vol.38, p.69-72
Hauptverfasser: Heidrich, N., Zuerbig, V., Iankov, D., Pletschen, W., Sah, R.E., Raynor, B., Kirste, L., Nebel, C.E., Ambacher, O., Lebedev, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 69
container_title Diamond and related materials
container_volume 38
creator Heidrich, N.
Zuerbig, V.
Iankov, D.
Pletschen, W.
Sah, R.E.
Raynor, B.
Kirste, L.
Nebel, C.E.
Ambacher, O.
Lebedev, V.
description In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used. •Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.
doi_str_mv 10.1016/j.diamond.2013.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513461958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963513001349</els_id><sourcerecordid>1513461958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-7896c7d8e1371c29da9752fcd09f0535fa7a8e1f74a5535110e2a919bc6bda533</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWD9-grAXwcuumWSTNCcR8QtEPeg5pMnEpmx3a7IV9Neb0uLV0xDmeWfCM4ScAW2AgrxcND7a5dD7hlHgDZUNBbFHJjBVuqZUsn0yoZqJWksuDslRzgtKgekWJuT5NeLPgB26MUVnu-67sm5c2xF9tZtaOduPscMvTLkKQ6rm8WNeh4Sfa-xd4VerrkTHOPT5hBwE22U83dVj8n53-3bzUD-93D_eXD_Vjgs-1mqqpVN-isAVOKa91Uqw4DzVgQouglW2NINqrShPAIrMatAzJ2feCs6PycV27ioN5Rt5NMuYHXad7XFYZwMCeCtBi-n_aCtb0UoKG1RsUZeGnBMGs0pxadO3AWo2qs3C7KSYjWpDpSmqS-58t8Lm4jAk27uY_8JMKabLGQp3teWwqPmKmEx2sThEH1M5gPFD_GfTL12Kl5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464546018</pqid></control><display><type>article</type><title>Piezoelectrically actuated diamond cantilevers for high-frequency applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Heidrich, N. ; Zuerbig, V. ; Iankov, D. ; Pletschen, W. ; Sah, R.E. ; Raynor, B. ; Kirste, L. ; Nebel, C.E. ; Ambacher, O. ; Lebedev, V.</creator><creatorcontrib>Heidrich, N. ; Zuerbig, V. ; Iankov, D. ; Pletschen, W. ; Sah, R.E. ; Raynor, B. ; Kirste, L. ; Nebel, C.E. ; Ambacher, O. ; Lebedev, V.</creatorcontrib><description>In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used. •Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2013.06.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum nitride (AlN) ; Applied sciences ; Cantilever beams ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Devices ; Diamonds ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Electrodes ; Electron and ion emission by liquids and solids; impact phenomena ; Electronics ; Exact sciences and technology ; Field emission ; Field emission, ionization, evaporation, and desorption ; Fullerenes and related materials; diamonds, graphite ; Materials science ; Mechanical property characterization ; Micro electromechanical systems (MEMS) ; Modulation ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanocrystalline diamond ; Nanomaterials ; Nanostructure ; Oscillations ; p-type doping ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials</subject><ispartof>Diamond and related materials, 2013-09, Vol.38, p.69-72</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-7896c7d8e1371c29da9752fcd09f0535fa7a8e1f74a5535110e2a919bc6bda533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2013.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27729062$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heidrich, N.</creatorcontrib><creatorcontrib>Zuerbig, V.</creatorcontrib><creatorcontrib>Iankov, D.</creatorcontrib><creatorcontrib>Pletschen, W.</creatorcontrib><creatorcontrib>Sah, R.E.</creatorcontrib><creatorcontrib>Raynor, B.</creatorcontrib><creatorcontrib>Kirste, L.</creatorcontrib><creatorcontrib>Nebel, C.E.</creatorcontrib><creatorcontrib>Ambacher, O.</creatorcontrib><creatorcontrib>Lebedev, V.</creatorcontrib><title>Piezoelectrically actuated diamond cantilevers for high-frequency applications</title><title>Diamond and related materials</title><description>In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used. •Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.</description><subject>Aluminum nitride (AlN)</subject><subject>Applied sciences</subject><subject>Cantilever beams</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Diamonds</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Electrodes</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Field emission</subject><subject>Field emission, ionization, evaporation, and desorption</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials science</subject><subject>Mechanical property characterization</subject><subject>Micro electromechanical systems (MEMS)</subject><subject>Modulation</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanocrystalline diamond</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oscillations</subject><subject>p-type doping</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMoWD9-grAXwcuumWSTNCcR8QtEPeg5pMnEpmx3a7IV9Neb0uLV0xDmeWfCM4ScAW2AgrxcND7a5dD7hlHgDZUNBbFHJjBVuqZUsn0yoZqJWksuDslRzgtKgekWJuT5NeLPgB26MUVnu-67sm5c2xF9tZtaOduPscMvTLkKQ6rm8WNeh4Sfa-xd4VerrkTHOPT5hBwE22U83dVj8n53-3bzUD-93D_eXD_Vjgs-1mqqpVN-isAVOKa91Uqw4DzVgQouglW2NINqrShPAIrMatAzJ2feCs6PycV27ioN5Rt5NMuYHXad7XFYZwMCeCtBi-n_aCtb0UoKG1RsUZeGnBMGs0pxadO3AWo2qs3C7KSYjWpDpSmqS-58t8Lm4jAk27uY_8JMKabLGQp3teWwqPmKmEx2sThEH1M5gPFD_GfTL12Kl5M</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Heidrich, N.</creator><creator>Zuerbig, V.</creator><creator>Iankov, D.</creator><creator>Pletschen, W.</creator><creator>Sah, R.E.</creator><creator>Raynor, B.</creator><creator>Kirste, L.</creator><creator>Nebel, C.E.</creator><creator>Ambacher, O.</creator><creator>Lebedev, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Piezoelectrically actuated diamond cantilevers for high-frequency applications</title><author>Heidrich, N. ; Zuerbig, V. ; Iankov, D. ; Pletschen, W. ; Sah, R.E. ; Raynor, B. ; Kirste, L. ; Nebel, C.E. ; Ambacher, O. ; Lebedev, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-7896c7d8e1371c29da9752fcd09f0535fa7a8e1f74a5535110e2a919bc6bda533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum nitride (AlN)</topic><topic>Applied sciences</topic><topic>Cantilever beams</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Diamonds</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Electrodes</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Field emission</topic><topic>Field emission, ionization, evaporation, and desorption</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials science</topic><topic>Mechanical property characterization</topic><topic>Micro electromechanical systems (MEMS)</topic><topic>Modulation</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanocrystalline diamond</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oscillations</topic><topic>p-type doping</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidrich, N.</creatorcontrib><creatorcontrib>Zuerbig, V.</creatorcontrib><creatorcontrib>Iankov, D.</creatorcontrib><creatorcontrib>Pletschen, W.</creatorcontrib><creatorcontrib>Sah, R.E.</creatorcontrib><creatorcontrib>Raynor, B.</creatorcontrib><creatorcontrib>Kirste, L.</creatorcontrib><creatorcontrib>Nebel, C.E.</creatorcontrib><creatorcontrib>Ambacher, O.</creatorcontrib><creatorcontrib>Lebedev, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidrich, N.</au><au>Zuerbig, V.</au><au>Iankov, D.</au><au>Pletschen, W.</au><au>Sah, R.E.</au><au>Raynor, B.</au><au>Kirste, L.</au><au>Nebel, C.E.</au><au>Ambacher, O.</au><au>Lebedev, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectrically actuated diamond cantilevers for high-frequency applications</atitle><jtitle>Diamond and related materials</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>38</volume><spage>69</spage><epage>72</epage><pages>69-72</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>In this work, we present a proof-of-concept for the modulation of field emission currents from boron doped nano-diamond based micro-electro-mechanical cantilevers. This modulation was achieved by variations in anode–cathode spacing using mechanical oscillations of the field emitting tips by means of piezoelectric actuation of an aluminum nitride layer. In these devices, the nano-diamond layers serve as a multifunctional material as they are used as field emitters, elastic layers in a unimorph layer stack and as electrodes for piezo-actuation. The cantilevers are processed using conventional micro-fabrication technology and are enhanced by focused ion beam milling, introducing nano-scale features. In addition, it is shown that a stress compensating geometry is efficient to counteract the large thermally induced strain in the nano-materials used. •Nano-diamond based MEMS cantilevers, enhanced by focused ion beam milling.•Stress compensating geometry to counteract the thermally induced strain.•Modulation of field emission currents by variations in anode-cathode spacing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2013.06.015</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2013-09, Vol.38, p.69-72
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_miscellaneous_1513461958
source Elsevier ScienceDirect Journals Complete
subjects Aluminum nitride (AlN)
Applied sciences
Cantilever beams
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Devices
Diamonds
Dielectric, piezoelectric, ferroelectric and antiferroelectric materials
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Electrodes
Electron and ion emission by liquids and solids
impact phenomena
Electronics
Exact sciences and technology
Field emission
Field emission, ionization, evaporation, and desorption
Fullerenes and related materials
diamonds, graphite
Materials science
Mechanical property characterization
Micro electromechanical systems (MEMS)
Modulation
Molecular electronics, nanoelectronics
Nanocomposites
Nanocrystalline diamond
Nanomaterials
Nanostructure
Oscillations
p-type doping
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
title Piezoelectrically actuated diamond cantilevers for high-frequency applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectrically%20actuated%20diamond%20cantilevers%20for%20high-frequency%20applications&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Heidrich,%20N.&rft.date=2013-09-01&rft.volume=38&rft.spage=69&rft.epage=72&rft.pages=69-72&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2013.06.015&rft_dat=%3Cproquest_cross%3E1513461958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464546018&rft_id=info:pmid/&rft_els_id=S0925963513001349&rfr_iscdi=true