Small-angle scattering from multiphase fractals
Small‐angle scattering (SAS) intensities observed experimentally are often characterized by the presence of successive power‐law regimes with various scattering exponents whose values vary from −4 to −1. This usually indicates multiple fractal structures of the sample characterized by different size...
Gespeichert in:
Veröffentlicht in: | Journal of applied crystallography 2014-02, Vol.47 (1), p.198-206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | Journal of applied crystallography |
container_volume | 47 |
creator | Cherny, A. Yu Anitas, E. M. Osipov, V. A. Kuklin, A. I. |
description | Small‐angle scattering (SAS) intensities observed experimentally are often characterized by the presence of successive power‐law regimes with various scattering exponents whose values vary from −4 to −1. This usually indicates multiple fractal structures of the sample characterized by different size scales. The existing models explaining the crossover positions (that is, the points where the power‐law scattering exponent changes) involve only one contrast parameter, which depends solely on the ratio of the fractal sizes. Here, a model that describes SAS from a multiphase system with a few contrast parameters is described, and it is shown that the crossover position depends on the scattering length density of each phase. The Stuhrmann contrast variation method is generalized and applied to experimental curves in the vicinity of the crossover point beyond the Guinier region. The contrast variation is applied not to the intensity itself but to the model parameters, which can be found by fitting the experimental data with the suggested interpolation formula. The model supplements the existing two‐phase models and gives the simple condition of their inapplicability: if the crossover point depends on the contrast then a two‐phase model is not relevant. The developed analysis allows one to answer the qualitative question of whether one fractal `absorbs' another one or they are both immersed in a surrounding homogeneous medium like a solvent or solid matrix. The models can be applied to experimental SAS data where the absolute value of the scattering exponent of the first power‐law regime is higher than that of the subsequent second power‐law regime, that is, the scattering curve is `convex' near the crossover point. As is shown, the crossover position can be very sensitive to contrast variation, which influences significantly the length of the fractal range. |
doi_str_mv | 10.1107/S1600576713029956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513457339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3202979931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3947-9843bc07bb0edef2baed42eec5d3c14f5898904ce3f84d782dab3aefc871f24e3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhYMoWKs_wF3BjZvYeSWTWWrR-qhajCK4GSaTOzU6SepMgvbfmxIR0YWrc-_hfJfLCYJ9jI4wRnyc4hihiMccU0SEiOKNYLC2wrW3-WPeDna8f0EIx5yQQTBOS2VtqKqFhZHXqmnAFdViZFxdjsrWNsXyWXnodqUbZf1usGU6gb0vHQYPZ6f3k_Nwdju9mBzPQk0F46FIGM004lmGIAdDMgU5IwA6yqnGzESJSARiGqhJWM4TkquMKjA64dgQBnQYHPZ3l65-a8E3siy8BmtVBXXrJY4wZRGnVHTRg1_Rl7p1VfedxEwwFCcE4S6F-5R2tfcOjFy6olRuJTGS6wrlnwo7RvTMe2Fh9T8gLyd35CqNaMI7NuzZwjfw8c0q9ypjTnkkH2-mck6u0_lJzOQT_QQl_4Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494068201</pqid></control><display><type>article</type><title>Small-angle scattering from multiphase fractals</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Cherny, A. Yu ; Anitas, E. M. ; Osipov, V. A. ; Kuklin, A. I.</creator><creatorcontrib>Cherny, A. Yu ; Anitas, E. M. ; Osipov, V. A. ; Kuklin, A. I.</creatorcontrib><description>Small‐angle scattering (SAS) intensities observed experimentally are often characterized by the presence of successive power‐law regimes with various scattering exponents whose values vary from −4 to −1. This usually indicates multiple fractal structures of the sample characterized by different size scales. The existing models explaining the crossover positions (that is, the points where the power‐law scattering exponent changes) involve only one contrast parameter, which depends solely on the ratio of the fractal sizes. Here, a model that describes SAS from a multiphase system with a few contrast parameters is described, and it is shown that the crossover position depends on the scattering length density of each phase. The Stuhrmann contrast variation method is generalized and applied to experimental curves in the vicinity of the crossover point beyond the Guinier region. The contrast variation is applied not to the intensity itself but to the model parameters, which can be found by fitting the experimental data with the suggested interpolation formula. The model supplements the existing two‐phase models and gives the simple condition of their inapplicability: if the crossover point depends on the contrast then a two‐phase model is not relevant. The developed analysis allows one to answer the qualitative question of whether one fractal `absorbs' another one or they are both immersed in a surrounding homogeneous medium like a solvent or solid matrix. The models can be applied to experimental SAS data where the absolute value of the scattering exponent of the first power‐law regime is higher than that of the subsequent second power‐law regime, that is, the scattering curve is `convex' near the crossover point. As is shown, the crossover position can be very sensitive to contrast variation, which influences significantly the length of the fractal range.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576713029956</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>crossover positions ; Crossovers ; Crystallography ; Density ; deterministic and random fractals ; Exponents ; Fractal analysis ; Fractals ; Mathematical models ; multiphase systems ; SAS ; Scattering ; small-angle scattering</subject><ispartof>Journal of applied crystallography, 2014-02, Vol.47 (1), p.198-206</ispartof><rights>International Union of Crystallography, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3947-9843bc07bb0edef2baed42eec5d3c14f5898904ce3f84d782dab3aefc871f24e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576713029956$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576713029956$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Cherny, A. Yu</creatorcontrib><creatorcontrib>Anitas, E. M.</creatorcontrib><creatorcontrib>Osipov, V. A.</creatorcontrib><creatorcontrib>Kuklin, A. I.</creatorcontrib><title>Small-angle scattering from multiphase fractals</title><title>Journal of applied crystallography</title><addtitle>Jnl Applied Crystallography</addtitle><description>Small‐angle scattering (SAS) intensities observed experimentally are often characterized by the presence of successive power‐law regimes with various scattering exponents whose values vary from −4 to −1. This usually indicates multiple fractal structures of the sample characterized by different size scales. The existing models explaining the crossover positions (that is, the points where the power‐law scattering exponent changes) involve only one contrast parameter, which depends solely on the ratio of the fractal sizes. Here, a model that describes SAS from a multiphase system with a few contrast parameters is described, and it is shown that the crossover position depends on the scattering length density of each phase. The Stuhrmann contrast variation method is generalized and applied to experimental curves in the vicinity of the crossover point beyond the Guinier region. The contrast variation is applied not to the intensity itself but to the model parameters, which can be found by fitting the experimental data with the suggested interpolation formula. The model supplements the existing two‐phase models and gives the simple condition of their inapplicability: if the crossover point depends on the contrast then a two‐phase model is not relevant. The developed analysis allows one to answer the qualitative question of whether one fractal `absorbs' another one or they are both immersed in a surrounding homogeneous medium like a solvent or solid matrix. The models can be applied to experimental SAS data where the absolute value of the scattering exponent of the first power‐law regime is higher than that of the subsequent second power‐law regime, that is, the scattering curve is `convex' near the crossover point. As is shown, the crossover position can be very sensitive to contrast variation, which influences significantly the length of the fractal range.</description><subject>crossover positions</subject><subject>Crossovers</subject><subject>Crystallography</subject><subject>Density</subject><subject>deterministic and random fractals</subject><subject>Exponents</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Mathematical models</subject><subject>multiphase systems</subject><subject>SAS</subject><subject>Scattering</subject><subject>small-angle scattering</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhYMoWKs_wF3BjZvYeSWTWWrR-qhajCK4GSaTOzU6SepMgvbfmxIR0YWrc-_hfJfLCYJ9jI4wRnyc4hihiMccU0SEiOKNYLC2wrW3-WPeDna8f0EIx5yQQTBOS2VtqKqFhZHXqmnAFdViZFxdjsrWNsXyWXnodqUbZf1usGU6gb0vHQYPZ6f3k_Nwdju9mBzPQk0F46FIGM004lmGIAdDMgU5IwA6yqnGzESJSARiGqhJWM4TkquMKjA64dgQBnQYHPZ3l65-a8E3siy8BmtVBXXrJY4wZRGnVHTRg1_Rl7p1VfedxEwwFCcE4S6F-5R2tfcOjFy6olRuJTGS6wrlnwo7RvTMe2Fh9T8gLyd35CqNaMI7NuzZwjfw8c0q9ypjTnkkH2-mck6u0_lJzOQT_QQl_4Jg</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Cherny, A. Yu</creator><creator>Anitas, E. M.</creator><creator>Osipov, V. A.</creator><creator>Kuklin, A. I.</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201402</creationdate><title>Small-angle scattering from multiphase fractals</title><author>Cherny, A. Yu ; Anitas, E. M. ; Osipov, V. A. ; Kuklin, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3947-9843bc07bb0edef2baed42eec5d3c14f5898904ce3f84d782dab3aefc871f24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>crossover positions</topic><topic>Crossovers</topic><topic>Crystallography</topic><topic>Density</topic><topic>deterministic and random fractals</topic><topic>Exponents</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Mathematical models</topic><topic>multiphase systems</topic><topic>SAS</topic><topic>Scattering</topic><topic>small-angle scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherny, A. Yu</creatorcontrib><creatorcontrib>Anitas, E. M.</creatorcontrib><creatorcontrib>Osipov, V. A.</creatorcontrib><creatorcontrib>Kuklin, A. I.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherny, A. Yu</au><au>Anitas, E. M.</au><au>Osipov, V. A.</au><au>Kuklin, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-angle scattering from multiphase fractals</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>Jnl Applied Crystallography</addtitle><date>2014-02</date><risdate>2014</risdate><volume>47</volume><issue>1</issue><spage>198</spage><epage>206</epage><pages>198-206</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Small‐angle scattering (SAS) intensities observed experimentally are often characterized by the presence of successive power‐law regimes with various scattering exponents whose values vary from −4 to −1. This usually indicates multiple fractal structures of the sample characterized by different size scales. The existing models explaining the crossover positions (that is, the points where the power‐law scattering exponent changes) involve only one contrast parameter, which depends solely on the ratio of the fractal sizes. Here, a model that describes SAS from a multiphase system with a few contrast parameters is described, and it is shown that the crossover position depends on the scattering length density of each phase. The Stuhrmann contrast variation method is generalized and applied to experimental curves in the vicinity of the crossover point beyond the Guinier region. The contrast variation is applied not to the intensity itself but to the model parameters, which can be found by fitting the experimental data with the suggested interpolation formula. The model supplements the existing two‐phase models and gives the simple condition of their inapplicability: if the crossover point depends on the contrast then a two‐phase model is not relevant. The developed analysis allows one to answer the qualitative question of whether one fractal `absorbs' another one or they are both immersed in a surrounding homogeneous medium like a solvent or solid matrix. The models can be applied to experimental SAS data where the absolute value of the scattering exponent of the first power‐law regime is higher than that of the subsequent second power‐law regime, that is, the scattering curve is `convex' near the crossover point. As is shown, the crossover position can be very sensitive to contrast variation, which influences significantly the length of the fractal range.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576713029956</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2014-02, Vol.47 (1), p.198-206 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513457339 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | crossover positions Crossovers Crystallography Density deterministic and random fractals Exponents Fractal analysis Fractals Mathematical models multiphase systems SAS Scattering small-angle scattering |
title | Small-angle scattering from multiphase fractals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-angle%20scattering%20from%20multiphase%20fractals&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Cherny,%20A.%20Yu&rft.date=2014-02&rft.volume=47&rft.issue=1&rft.spage=198&rft.epage=206&rft.pages=198-206&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576713029956&rft_dat=%3Cproquest_cross%3E3202979931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494068201&rft_id=info:pmid/&rfr_iscdi=true |