Adaptive Input Design for Identification of Output Error Model with Constrained Output
Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2014, Vol.33 (1), p.97-113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | Circuits, systems, and signal processing |
container_volume | 33 |
creator | Stojanovic, Vladimir Filipovic, Vojislav |
description | Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations. |
doi_str_mv | 10.1007/s00034-013-9633-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513453510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513453510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRWFgC78V2E49VKVCpqAsgNiuJneKqtYvtgPh7EqUDQmJ6wz336ukQcolwgwD5bQAAylJAmooJpSkckRFyiikv8uKYjCDLixQKfDslZyFsAFAwkY3I61SV-2g-dbKw-zYmdzqYtU0a55OF0jaaxtRlNM4mrklWbeyZufdd_OSU3iZfJr4nM2dD9KWxWh2Yc3LSlNugLw53TF7u58-zx3S5eljMpsu0pkzElGWVKKDmeVUIUfMCacmwoBOslcp5pvWEcyZUBqVSyJjKQfCKAa2qrFacTuiYXA-7e-8-Wh2i3JlQ6-22tNq1QSJHyjjlCB169QfduNbb7juJnYqsM0JFR-FA1d6F4HUj997sSv8tEWRvWg6mZWda9qZlv5wNndCxdq39r-V_Sz9MFn9q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492201939</pqid></control><display><type>article</type><title>Adaptive Input Design for Identification of Output Error Model with Constrained Output</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stojanovic, Vladimir ; Filipovic, Vojislav</creator><creatorcontrib>Stojanovic, Vladimir ; Filipovic, Vojislav</creatorcontrib><description>Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-013-9633-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adaptive control systems ; Circuits and Systems ; Constraints ; Design engineering ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Errors ; Input output analysis ; Instrumentation ; Optimization ; Signal,Image and Speech Processing ; Stochasticity ; System identification ; Variance</subject><ispartof>Circuits, systems, and signal processing, 2014, Vol.33 (1), p.97-113</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</citedby><cites>FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-013-9633-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-013-9633-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Stojanovic, Vladimir</creatorcontrib><creatorcontrib>Filipovic, Vojislav</creatorcontrib><title>Adaptive Input Design for Identification of Output Error Model with Constrained Output</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.</description><subject>Adaptive control systems</subject><subject>Circuits and Systems</subject><subject>Constraints</subject><subject>Design engineering</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Errors</subject><subject>Input output analysis</subject><subject>Instrumentation</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Stochasticity</subject><subject>System identification</subject><subject>Variance</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAURS0EEqXwAWyRWFgC78V2E49VKVCpqAsgNiuJneKqtYvtgPh7EqUDQmJ6wz336ukQcolwgwD5bQAAylJAmooJpSkckRFyiikv8uKYjCDLixQKfDslZyFsAFAwkY3I61SV-2g-dbKw-zYmdzqYtU0a55OF0jaaxtRlNM4mrklWbeyZufdd_OSU3iZfJr4nM2dD9KWxWh2Yc3LSlNugLw53TF7u58-zx3S5eljMpsu0pkzElGWVKKDmeVUIUfMCacmwoBOslcp5pvWEcyZUBqVSyJjKQfCKAa2qrFacTuiYXA-7e-8-Wh2i3JlQ6-22tNq1QSJHyjjlCB169QfduNbb7juJnYqsM0JFR-FA1d6F4HUj997sSv8tEWRvWg6mZWda9qZlv5wNndCxdq39r-V_Sz9MFn9q</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Stojanovic, Vladimir</creator><creator>Filipovic, Vojislav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2014</creationdate><title>Adaptive Input Design for Identification of Output Error Model with Constrained Output</title><author>Stojanovic, Vladimir ; Filipovic, Vojislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive control systems</topic><topic>Circuits and Systems</topic><topic>Constraints</topic><topic>Design engineering</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Errors</topic><topic>Input output analysis</topic><topic>Instrumentation</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Stochasticity</topic><topic>System identification</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stojanovic, Vladimir</creatorcontrib><creatorcontrib>Filipovic, Vojislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stojanovic, Vladimir</au><au>Filipovic, Vojislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Input Design for Identification of Output Error Model with Constrained Output</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2014</date><risdate>2014</risdate><volume>33</volume><issue>1</issue><spage>97</spage><epage>113</epage><pages>97-113</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00034-013-9633-0</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2014, Vol.33 (1), p.97-113 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513453510 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive control systems Circuits and Systems Constraints Design engineering Electrical Engineering Electronics and Microelectronics Engineering Errors Input output analysis Instrumentation Optimization Signal,Image and Speech Processing Stochasticity System identification Variance |
title | Adaptive Input Design for Identification of Output Error Model with Constrained Output |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Input%20Design%20for%20Identification%20of%20Output%20Error%20Model%20with%20Constrained%20Output&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Stojanovic,%20Vladimir&rft.date=2014&rft.volume=33&rft.issue=1&rft.spage=97&rft.epage=113&rft.pages=97-113&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-013-9633-0&rft_dat=%3Cproquest_cross%3E1513453510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492201939&rft_id=info:pmid/&rfr_iscdi=true |