Adaptive Input Design for Identification of Output Error Model with Constrained Output

Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2014, Vol.33 (1), p.97-113
Hauptverfasser: Stojanovic, Vladimir, Filipovic, Vojislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 97
container_title Circuits, systems, and signal processing
container_volume 33
creator Stojanovic, Vladimir
Filipovic, Vojislav
description Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.
doi_str_mv 10.1007/s00034-013-9633-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513453510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513453510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRWFgC78V2E49VKVCpqAsgNiuJneKqtYvtgPh7EqUDQmJ6wz336ukQcolwgwD5bQAAylJAmooJpSkckRFyiikv8uKYjCDLixQKfDslZyFsAFAwkY3I61SV-2g-dbKw-zYmdzqYtU0a55OF0jaaxtRlNM4mrklWbeyZufdd_OSU3iZfJr4nM2dD9KWxWh2Yc3LSlNugLw53TF7u58-zx3S5eljMpsu0pkzElGWVKKDmeVUIUfMCacmwoBOslcp5pvWEcyZUBqVSyJjKQfCKAa2qrFacTuiYXA-7e-8-Wh2i3JlQ6-22tNq1QSJHyjjlCB169QfduNbb7juJnYqsM0JFR-FA1d6F4HUj997sSv8tEWRvWg6mZWda9qZlv5wNndCxdq39r-V_Sz9MFn9q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492201939</pqid></control><display><type>article</type><title>Adaptive Input Design for Identification of Output Error Model with Constrained Output</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stojanovic, Vladimir ; Filipovic, Vojislav</creator><creatorcontrib>Stojanovic, Vladimir ; Filipovic, Vojislav</creatorcontrib><description>Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-013-9633-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adaptive control systems ; Circuits and Systems ; Constraints ; Design engineering ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Errors ; Input output analysis ; Instrumentation ; Optimization ; Signal,Image and Speech Processing ; Stochasticity ; System identification ; Variance</subject><ispartof>Circuits, systems, and signal processing, 2014, Vol.33 (1), p.97-113</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</citedby><cites>FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-013-9633-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-013-9633-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Stojanovic, Vladimir</creatorcontrib><creatorcontrib>Filipovic, Vojislav</creatorcontrib><title>Adaptive Input Design for Identification of Output Error Model with Constrained Output</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.</description><subject>Adaptive control systems</subject><subject>Circuits and Systems</subject><subject>Constraints</subject><subject>Design engineering</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Errors</subject><subject>Input output analysis</subject><subject>Instrumentation</subject><subject>Optimization</subject><subject>Signal,Image and Speech Processing</subject><subject>Stochasticity</subject><subject>System identification</subject><subject>Variance</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAURS0EEqXwAWyRWFgC78V2E49VKVCpqAsgNiuJneKqtYvtgPh7EqUDQmJ6wz336ukQcolwgwD5bQAAylJAmooJpSkckRFyiikv8uKYjCDLixQKfDslZyFsAFAwkY3I61SV-2g-dbKw-zYmdzqYtU0a55OF0jaaxtRlNM4mrklWbeyZufdd_OSU3iZfJr4nM2dD9KWxWh2Yc3LSlNugLw53TF7u58-zx3S5eljMpsu0pkzElGWVKKDmeVUIUfMCacmwoBOslcp5pvWEcyZUBqVSyJjKQfCKAa2qrFacTuiYXA-7e-8-Wh2i3JlQ6-22tNq1QSJHyjjlCB169QfduNbb7juJnYqsM0JFR-FA1d6F4HUj997sSv8tEWRvWg6mZWda9qZlv5wNndCxdq39r-V_Sz9MFn9q</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Stojanovic, Vladimir</creator><creator>Filipovic, Vojislav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2014</creationdate><title>Adaptive Input Design for Identification of Output Error Model with Constrained Output</title><author>Stojanovic, Vladimir ; Filipovic, Vojislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-42b980c57b899c5813a418361cdd752ee65549d20add144d7095b403bb2cd5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive control systems</topic><topic>Circuits and Systems</topic><topic>Constraints</topic><topic>Design engineering</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Errors</topic><topic>Input output analysis</topic><topic>Instrumentation</topic><topic>Optimization</topic><topic>Signal,Image and Speech Processing</topic><topic>Stochasticity</topic><topic>System identification</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stojanovic, Vladimir</creatorcontrib><creatorcontrib>Filipovic, Vojislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stojanovic, Vladimir</au><au>Filipovic, Vojislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Input Design for Identification of Output Error Model with Constrained Output</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2014</date><risdate>2014</risdate><volume>33</volume><issue>1</issue><spage>97</spage><epage>113</epage><pages>97-113</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Optimal input design for system identification is an area of intensive modern research. This paper considers the identification of output error (OE) model, for the case of constrained output variance. The constraint plays a very important role in the process industry, in the reduction of degradation of product quality. In this paper, it is shown, in the form of a theorem, that the optimal input signal, with constrained output, is achieved by a minimum variance controller together with a stochastic reference. The key problem is that the optimal input depends on the system parameters to be identified. In order to overcome this problem, a two-stage adaptive procedure is proposed: obtaining an initial model using PRBS as input signal; application of adaptive minimum variance controller together with the stochastic variable reference, in order to generate input signals for system identification. Theoretical results are illustrated by simulations.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00034-013-9633-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2014, Vol.33 (1), p.97-113
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_miscellaneous_1513453510
source SpringerLink Journals - AutoHoldings
subjects Adaptive control systems
Circuits and Systems
Constraints
Design engineering
Electrical Engineering
Electronics and Microelectronics
Engineering
Errors
Input output analysis
Instrumentation
Optimization
Signal,Image and Speech Processing
Stochasticity
System identification
Variance
title Adaptive Input Design for Identification of Output Error Model with Constrained Output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Input%20Design%20for%20Identification%20of%20Output%20Error%20Model%20with%20Constrained%20Output&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Stojanovic,%20Vladimir&rft.date=2014&rft.volume=33&rft.issue=1&rft.spage=97&rft.epage=113&rft.pages=97-113&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-013-9633-0&rft_dat=%3Cproquest_cross%3E1513453510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492201939&rft_id=info:pmid/&rfr_iscdi=true