Discretized Tikhonov regularization for Robin boundaries localization

We deal with a boundary detection problem arising in nondestructive testing of materials. The problem consists in recovering an unknown portion of the boundary, where a Robin condition is satisfied, with the use of a Cauchy data pair collected on the accessible part of the boundary. We combine a lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-01, Vol.226, p.374-385
Hauptverfasser: Cao, Hui, Pereverzev, Sergei V., Sincich, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue
container_start_page 374
container_title Applied mathematics and computation
container_volume 226
creator Cao, Hui
Pereverzev, Sergei V.
Sincich, Eva
description We deal with a boundary detection problem arising in nondestructive testing of materials. The problem consists in recovering an unknown portion of the boundary, where a Robin condition is satisfied, with the use of a Cauchy data pair collected on the accessible part of the boundary. We combine a linearization argument with a Tikhonov regularization approach for the local reconstruction of the unknown defect. Moreover, we discuss the regularization parameter choice by means of the so called balancing principle and we present some numerical tests that show the efficiency of our method.
doi_str_mv 10.1016/j.amc.2013.10.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513453357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031301093X</els_id><sourcerecordid>1513453357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5e194e742432f58bcd4da4eda7baa689669b3ce8303b6820857c2ce5e611ae953</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwA7j1yKUlqZO0FSc0NkCahITGOUpTFzK6ZiTtJPbrybSdOVm237OeP0JuGc0YZfJ-nemNyXLKIPYZBXlGJqwsIBWSV-dkQmklU6AULslVCGtKaSEZn5D5kw3G42D32CQr-_3lerdLPH6OnfZ2rwfr-qR1Pnl3te2T2o19ExcYks4Z3Z0U1-Si1V3Am1Odko_FfDV7SZdvz6-zx2VqoIAhFcgqjgXPOeStKGvT8EZzbHRRay3LSsqqBoMlUKhlmdNSFCY3KFAyprESMCV3x7tb735GDIPaxPjYdbpHNwbFBAMuAEQRpewoNd6F4LFVW2832v8qRtUBmVqriEwdkB1GEVn0PBw9GH_YWfQqGIu9wcZ6NINqnP3H_QfkgXSl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513453357</pqid></control><display><type>article</type><title>Discretized Tikhonov regularization for Robin boundaries localization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cao, Hui ; Pereverzev, Sergei V. ; Sincich, Eva</creator><creatorcontrib>Cao, Hui ; Pereverzev, Sergei V. ; Sincich, Eva</creatorcontrib><description>We deal with a boundary detection problem arising in nondestructive testing of materials. The problem consists in recovering an unknown portion of the boundary, where a Robin condition is satisfied, with the use of a Cauchy data pair collected on the accessible part of the boundary. We combine a linearization argument with a Tikhonov regularization approach for the local reconstruction of the unknown defect. Moreover, we discuss the regularization parameter choice by means of the so called balancing principle and we present some numerical tests that show the efficiency of our method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.10.036</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accessibility ; Balancing principle ; Boundaries ; Free boundary problem ; Local identification ; Localization ; Mathematical models ; Nondestructive testing ; Reconstruction ; Recovering ; Regularization ; Robin boundary condition ; Tikhonov regularization</subject><ispartof>Applied mathematics and computation, 2014-01, Vol.226, p.374-385</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5e194e742432f58bcd4da4eda7baa689669b3ce8303b6820857c2ce5e611ae953</citedby><cites>FETCH-LOGICAL-c373t-5e194e742432f58bcd4da4eda7baa689669b3ce8303b6820857c2ce5e611ae953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.10.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Pereverzev, Sergei V.</creatorcontrib><creatorcontrib>Sincich, Eva</creatorcontrib><title>Discretized Tikhonov regularization for Robin boundaries localization</title><title>Applied mathematics and computation</title><description>We deal with a boundary detection problem arising in nondestructive testing of materials. The problem consists in recovering an unknown portion of the boundary, where a Robin condition is satisfied, with the use of a Cauchy data pair collected on the accessible part of the boundary. We combine a linearization argument with a Tikhonov regularization approach for the local reconstruction of the unknown defect. Moreover, we discuss the regularization parameter choice by means of the so called balancing principle and we present some numerical tests that show the efficiency of our method.</description><subject>Accessibility</subject><subject>Balancing principle</subject><subject>Boundaries</subject><subject>Free boundary problem</subject><subject>Local identification</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Nondestructive testing</subject><subject>Reconstruction</subject><subject>Recovering</subject><subject>Regularization</subject><subject>Robin boundary condition</subject><subject>Tikhonov regularization</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmPwA7j1yKUlqZO0FSc0NkCahITGOUpTFzK6ZiTtJPbrybSdOVm237OeP0JuGc0YZfJ-nemNyXLKIPYZBXlGJqwsIBWSV-dkQmklU6AULslVCGtKaSEZn5D5kw3G42D32CQr-_3lerdLPH6OnfZ2rwfr-qR1Pnl3te2T2o19ExcYks4Z3Z0U1-Si1V3Am1Odko_FfDV7SZdvz6-zx2VqoIAhFcgqjgXPOeStKGvT8EZzbHRRay3LSsqqBoMlUKhlmdNSFCY3KFAyprESMCV3x7tb735GDIPaxPjYdbpHNwbFBAMuAEQRpewoNd6F4LFVW2832v8qRtUBmVqriEwdkB1GEVn0PBw9GH_YWfQqGIu9wcZ6NINqnP3H_QfkgXSl</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Cao, Hui</creator><creator>Pereverzev, Sergei V.</creator><creator>Sincich, Eva</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Discretized Tikhonov regularization for Robin boundaries localization</title><author>Cao, Hui ; Pereverzev, Sergei V. ; Sincich, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5e194e742432f58bcd4da4eda7baa689669b3ce8303b6820857c2ce5e611ae953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accessibility</topic><topic>Balancing principle</topic><topic>Boundaries</topic><topic>Free boundary problem</topic><topic>Local identification</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Nondestructive testing</topic><topic>Reconstruction</topic><topic>Recovering</topic><topic>Regularization</topic><topic>Robin boundary condition</topic><topic>Tikhonov regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Pereverzev, Sergei V.</creatorcontrib><creatorcontrib>Sincich, Eva</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Hui</au><au>Pereverzev, Sergei V.</au><au>Sincich, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretized Tikhonov regularization for Robin boundaries localization</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>226</volume><spage>374</spage><epage>385</epage><pages>374-385</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>We deal with a boundary detection problem arising in nondestructive testing of materials. The problem consists in recovering an unknown portion of the boundary, where a Robin condition is satisfied, with the use of a Cauchy data pair collected on the accessible part of the boundary. We combine a linearization argument with a Tikhonov regularization approach for the local reconstruction of the unknown defect. Moreover, we discuss the regularization parameter choice by means of the so called balancing principle and we present some numerical tests that show the efficiency of our method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.10.036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-01, Vol.226, p.374-385
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1513453357
source ScienceDirect Journals (5 years ago - present)
subjects Accessibility
Balancing principle
Boundaries
Free boundary problem
Local identification
Localization
Mathematical models
Nondestructive testing
Reconstruction
Recovering
Regularization
Robin boundary condition
Tikhonov regularization
title Discretized Tikhonov regularization for Robin boundaries localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretized%20Tikhonov%20regularization%20for%20Robin%20boundaries%20localization&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Cao,%20Hui&rft.date=2014-01-01&rft.volume=226&rft.spage=374&rft.epage=385&rft.pages=374-385&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.10.036&rft_dat=%3Cproquest_cross%3E1513453357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513453357&rft_id=info:pmid/&rft_els_id=S009630031301093X&rfr_iscdi=true