Solving linear equations with a stabilized GPBiCG method
Any residual polynomial of hybrid Bi-Conjugate Gradient (Bi-CG) methods, as Bi-CG STABilized (Bi-CGSTAB), BiCGstab(ℓ), Generalized Product-type Bi-CG (GPBiCG), and BiCG×MR2, can be expressed as the product of a Lanczos polynomial and a so-called stabilizing polynomial. The stabilizing polynomials of...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2013-05, Vol.67, p.4-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 4 |
container_title | Applied numerical mathematics |
container_volume | 67 |
creator | Abe, Kuniyoshi Sleijpen, Gerard L.G. |
description | Any residual polynomial of hybrid Bi-Conjugate Gradient (Bi-CG) methods, as Bi-CG STABilized (Bi-CGSTAB), BiCGstab(ℓ), Generalized Product-type Bi-CG (GPBiCG), and BiCG×MR2, can be expressed as the product of a Lanczos polynomial and a so-called stabilizing polynomial. The stabilizing polynomials of GPBiCG have originally been built by coupled two-term recurrences, but, as in BiCG×MR2, they can also be constructed by a three-term recurrence similar to the one for the Lanczos polynomials. In this paper, we propose to use this three-term recurrence and to combine it with a slightly modified version of the coupled two-term recurrences for Bi-CG. The modifications appear to lead to more accurate Bi-CG coefficients. We consider two combinations. The recurrences of the resulting two algorithms are different from those of the original GPBiCG, BiCG×MR2, and other variants in literature. Specifically in cases where the convergence has a long stagnation phase, the convergence seems to rely on the underlying Bi-CG process. We therefore also propose a “stabilization” strategy that allows the Bi-CG coefficients in our variants to be more accurately computed. Numerical experiments show that our two new variants are less affected by rounding errors, and a GPBiCG method with the stabilization strategy is more effective. |
doi_str_mv | 10.1016/j.apnum.2011.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513452125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927411001048</els_id><sourcerecordid>1513452125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3a21cb3c650812bae15ed005b7bd2f3544c59e04da0b1c4e335d0564b8d9ae713</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwC1gysiTcxXaSDgxQQUGqBBIwW459pY7y0dpJEfx6UsrMdMt7d7rH2CVCgoDZdZXoTTs0SQqICWQJIByxCRY5j6XI4JhNRqqIZ2kuTtlZCBUASClgworXrt659iOqXUvaR7QddO-6NkSfrl9HOgq9Ll3tvslGi5c7N19EDfXrzp6zk5WuA138zSl7f7h_mz_Gy-fF0_x2GRvOsz7mOkVTcpNJKDAtNaEkOx4v89KmKy6FMHJGIKyGEo0gzqUFmYmysDNNOfIpuzrs3fhuO1DoVeOCobrWLXVDUCiRC5liKkeUH1DjuxA8rdTGu0b7L4Wg9p1UpX47qX0nBZkaO43WzcGi8YudI6-CcdQass6T6ZXt3L_-D7H2cQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513452125</pqid></control><display><type>article</type><title>Solving linear equations with a stabilized GPBiCG method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abe, Kuniyoshi ; Sleijpen, Gerard L.G.</creator><creatorcontrib>Abe, Kuniyoshi ; Sleijpen, Gerard L.G.</creatorcontrib><description>Any residual polynomial of hybrid Bi-Conjugate Gradient (Bi-CG) methods, as Bi-CG STABilized (Bi-CGSTAB), BiCGstab(ℓ), Generalized Product-type Bi-CG (GPBiCG), and BiCG×MR2, can be expressed as the product of a Lanczos polynomial and a so-called stabilizing polynomial. The stabilizing polynomials of GPBiCG have originally been built by coupled two-term recurrences, but, as in BiCG×MR2, they can also be constructed by a three-term recurrence similar to the one for the Lanczos polynomials. In this paper, we propose to use this three-term recurrence and to combine it with a slightly modified version of the coupled two-term recurrences for Bi-CG. The modifications appear to lead to more accurate Bi-CG coefficients. We consider two combinations. The recurrences of the resulting two algorithms are different from those of the original GPBiCG, BiCG×MR2, and other variants in literature. Specifically in cases where the convergence has a long stagnation phase, the convergence seems to rely on the underlying Bi-CG process. We therefore also propose a “stabilization” strategy that allows the Bi-CG coefficients in our variants to be more accurately computed. Numerical experiments show that our two new variants are less affected by rounding errors, and a GPBiCG method with the stabilization strategy is more effective.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2011.06.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Bi-CG ; Convergence ; Generalized product-type Bi-CG method ; Hybrid Bi-CG ; Krylov subspace method ; Lanczos-type method ; Linear systems ; Mathematical models ; Permissible error ; Polynomials ; Stabilization ; Stagnation ; Strategy</subject><ispartof>Applied numerical mathematics, 2013-05, Vol.67, p.4-16</ispartof><rights>2011 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3a21cb3c650812bae15ed005b7bd2f3544c59e04da0b1c4e335d0564b8d9ae713</citedby><cites>FETCH-LOGICAL-c336t-3a21cb3c650812bae15ed005b7bd2f3544c59e04da0b1c4e335d0564b8d9ae713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2011.06.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Abe, Kuniyoshi</creatorcontrib><creatorcontrib>Sleijpen, Gerard L.G.</creatorcontrib><title>Solving linear equations with a stabilized GPBiCG method</title><title>Applied numerical mathematics</title><description>Any residual polynomial of hybrid Bi-Conjugate Gradient (Bi-CG) methods, as Bi-CG STABilized (Bi-CGSTAB), BiCGstab(ℓ), Generalized Product-type Bi-CG (GPBiCG), and BiCG×MR2, can be expressed as the product of a Lanczos polynomial and a so-called stabilizing polynomial. The stabilizing polynomials of GPBiCG have originally been built by coupled two-term recurrences, but, as in BiCG×MR2, they can also be constructed by a three-term recurrence similar to the one for the Lanczos polynomials. In this paper, we propose to use this three-term recurrence and to combine it with a slightly modified version of the coupled two-term recurrences for Bi-CG. The modifications appear to lead to more accurate Bi-CG coefficients. We consider two combinations. The recurrences of the resulting two algorithms are different from those of the original GPBiCG, BiCG×MR2, and other variants in literature. Specifically in cases where the convergence has a long stagnation phase, the convergence seems to rely on the underlying Bi-CG process. We therefore also propose a “stabilization” strategy that allows the Bi-CG coefficients in our variants to be more accurately computed. Numerical experiments show that our two new variants are less affected by rounding errors, and a GPBiCG method with the stabilization strategy is more effective.</description><subject>Algorithms</subject><subject>Bi-CG</subject><subject>Convergence</subject><subject>Generalized product-type Bi-CG method</subject><subject>Hybrid Bi-CG</subject><subject>Krylov subspace method</subject><subject>Lanczos-type method</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>Polynomials</subject><subject>Stabilization</subject><subject>Stagnation</subject><subject>Strategy</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwC1gysiTcxXaSDgxQQUGqBBIwW459pY7y0dpJEfx6UsrMdMt7d7rH2CVCgoDZdZXoTTs0SQqICWQJIByxCRY5j6XI4JhNRqqIZ2kuTtlZCBUASClgworXrt659iOqXUvaR7QddO-6NkSfrl9HOgq9Ll3tvslGi5c7N19EDfXrzp6zk5WuA138zSl7f7h_mz_Gy-fF0_x2GRvOsz7mOkVTcpNJKDAtNaEkOx4v89KmKy6FMHJGIKyGEo0gzqUFmYmysDNNOfIpuzrs3fhuO1DoVeOCobrWLXVDUCiRC5liKkeUH1DjuxA8rdTGu0b7L4Wg9p1UpX47qX0nBZkaO43WzcGi8YudI6-CcdQass6T6ZXt3L_-D7H2cQ0</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Abe, Kuniyoshi</creator><creator>Sleijpen, Gerard L.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130501</creationdate><title>Solving linear equations with a stabilized GPBiCG method</title><author>Abe, Kuniyoshi ; Sleijpen, Gerard L.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3a21cb3c650812bae15ed005b7bd2f3544c59e04da0b1c4e335d0564b8d9ae713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Bi-CG</topic><topic>Convergence</topic><topic>Generalized product-type Bi-CG method</topic><topic>Hybrid Bi-CG</topic><topic>Krylov subspace method</topic><topic>Lanczos-type method</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>Polynomials</topic><topic>Stabilization</topic><topic>Stagnation</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Kuniyoshi</creatorcontrib><creatorcontrib>Sleijpen, Gerard L.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Kuniyoshi</au><au>Sleijpen, Gerard L.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving linear equations with a stabilized GPBiCG method</atitle><jtitle>Applied numerical mathematics</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>67</volume><spage>4</spage><epage>16</epage><pages>4-16</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>Any residual polynomial of hybrid Bi-Conjugate Gradient (Bi-CG) methods, as Bi-CG STABilized (Bi-CGSTAB), BiCGstab(ℓ), Generalized Product-type Bi-CG (GPBiCG), and BiCG×MR2, can be expressed as the product of a Lanczos polynomial and a so-called stabilizing polynomial. The stabilizing polynomials of GPBiCG have originally been built by coupled two-term recurrences, but, as in BiCG×MR2, they can also be constructed by a three-term recurrence similar to the one for the Lanczos polynomials. In this paper, we propose to use this three-term recurrence and to combine it with a slightly modified version of the coupled two-term recurrences for Bi-CG. The modifications appear to lead to more accurate Bi-CG coefficients. We consider two combinations. The recurrences of the resulting two algorithms are different from those of the original GPBiCG, BiCG×MR2, and other variants in literature. Specifically in cases where the convergence has a long stagnation phase, the convergence seems to rely on the underlying Bi-CG process. We therefore also propose a “stabilization” strategy that allows the Bi-CG coefficients in our variants to be more accurately computed. Numerical experiments show that our two new variants are less affected by rounding errors, and a GPBiCG method with the stabilization strategy is more effective.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2011.06.010</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2013-05, Vol.67, p.4-16 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513452125 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Bi-CG Convergence Generalized product-type Bi-CG method Hybrid Bi-CG Krylov subspace method Lanczos-type method Linear systems Mathematical models Permissible error Polynomials Stabilization Stagnation Strategy |
title | Solving linear equations with a stabilized GPBiCG method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20linear%20equations%20with%20a%20stabilized%20GPBiCG%20method&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Abe,%20Kuniyoshi&rft.date=2013-05-01&rft.volume=67&rft.spage=4&rft.epage=16&rft.pages=4-16&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2011.06.010&rft_dat=%3Cproquest_cross%3E1513452125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513452125&rft_id=info:pmid/&rft_els_id=S0168927411001048&rfr_iscdi=true |