Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots
Effects of external electric and magnetic fields, dimension and pressure on the electromagnetically induced transparency of a pumped-probe GaAs quantum dot are investigated. To study the electromagnetically induced transparency, the probe absorption and group velocity along with refractive index of...
Gespeichert in:
Veröffentlicht in: | Journal of luminescence 2013-02, Vol.134, p.352-357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effects of external electric and magnetic fields, dimension and pressure on the electromagnetically induced transparency of a pumped-probe GaAs quantum dot are investigated. To study the electromagnetically induced transparency, the probe absorption and group velocity along with refractive index of the medium are discussed. It is found that electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields, pressure and the dot size. Significant effects of external factors on the quantum dot structures have the potential applications for implementation of electromagnetically induce transparency, slow lights, optical switches and quantum information storages.
► Sub-band energy states of a spherical QD are used to study the EIT. ► EIT strongly depends on the external fields, dimension and pressure. ► GI of a pulse strongly depends on the external fields, dimension and pressure. ► The production and controlling EIT and GI in QDs can be used for real applications. |
---|---|
ISSN: | 0022-2313 1872-7883 |
DOI: | 10.1016/j.jlumin.2012.08.021 |