Thermal-economic optimization of an air-cooled heat exchanger unit
Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2013-05, Vol.54 (1), p.43-55 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Applied thermal engineering |
container_volume | 54 |
creator | Alinia Kashani, Amir Hesam Maddahi, Alireza Hajabdollahi, Hassan |
description | Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined.
► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation. |
doi_str_mv | 10.1016/j.applthermaleng.2013.01.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513445749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431113000446</els_id><sourcerecordid>1448724354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhbNQsD7-QxYKblLnmcmAGy1WhYKbuh5upzftlGQmzqSi_npTWgRXCgfu5jvnwpdll5SMKaHlzWYMXdf0a4wtNOhXY0YoHxM6RBxlI8qlLgSn9CQ7TWlDCGWVEqPsfr5vFGiDD62zeeh617ov6F3weahz8Dm4WNgQGlzma4Q-xw-7Br_CmG-968-z4xqahBeHe5a9Th_mk6di9vL4PLmbFVYy3ReyUgspcFFquQCmecWZqiqtaq0qYEpoRtlSKAoUS7QoRVnrkpSVZqVEAoSfZdf73S6Gty2m3rQuWWwa8Bi2yVBJuRByWPobFaJSTHApBvR2j9oYUopYmy66FuKnocTszJqN-W3W7MwaQofs6leHT5AsNHUEb1362WCKl4JoOXDTPYeDoXeH0STr0Ftcuoi2N8vg_vfwG8RHl9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448724354</pqid></control><display><type>article</type><title>Thermal-economic optimization of an air-cooled heat exchanger unit</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Alinia Kashani, Amir Hesam ; Maddahi, Alireza ; Hajabdollahi, Hassan</creator><creatorcontrib>Alinia Kashani, Amir Hesam ; Maddahi, Alireza ; Hajabdollahi, Hassan</creatorcontrib><description>Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined.
► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2013.01.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air-cooled heat exchanger unit ; Applied sciences ; Design engineering ; Design parameters ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchangers ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Mathematical analysis ; Mathematical models ; Multi-objective optimization ; NSGA-II ; Optimization ; Sensitivity analysis ; Temperature approach ; Theoretical studies. Data and constants. Metering ; Thermal engineering ; Total annual cost</subject><ispartof>Applied thermal engineering, 2013-05, Vol.54 (1), p.43-55</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</citedby><cites>FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2013.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27364095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alinia Kashani, Amir Hesam</creatorcontrib><creatorcontrib>Maddahi, Alireza</creatorcontrib><creatorcontrib>Hajabdollahi, Hassan</creatorcontrib><title>Thermal-economic optimization of an air-cooled heat exchanger unit</title><title>Applied thermal engineering</title><description>Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined.
► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.</description><subject>Air-cooled heat exchanger unit</subject><subject>Applied sciences</subject><subject>Design engineering</subject><subject>Design parameters</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multi-objective optimization</subject><subject>NSGA-II</subject><subject>Optimization</subject><subject>Sensitivity analysis</subject><subject>Temperature approach</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal engineering</subject><subject>Total annual cost</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhbNQsD7-QxYKblLnmcmAGy1WhYKbuh5upzftlGQmzqSi_npTWgRXCgfu5jvnwpdll5SMKaHlzWYMXdf0a4wtNOhXY0YoHxM6RBxlI8qlLgSn9CQ7TWlDCGWVEqPsfr5vFGiDD62zeeh617ov6F3weahz8Dm4WNgQGlzma4Q-xw-7Br_CmG-968-z4xqahBeHe5a9Th_mk6di9vL4PLmbFVYy3ReyUgspcFFquQCmecWZqiqtaq0qYEpoRtlSKAoUS7QoRVnrkpSVZqVEAoSfZdf73S6Gty2m3rQuWWwa8Bi2yVBJuRByWPobFaJSTHApBvR2j9oYUopYmy66FuKnocTszJqN-W3W7MwaQofs6leHT5AsNHUEb1362WCKl4JoOXDTPYeDoXeH0STr0Ftcuoi2N8vg_vfwG8RHl9w</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Alinia Kashani, Amir Hesam</creator><creator>Maddahi, Alireza</creator><creator>Hajabdollahi, Hassan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130514</creationdate><title>Thermal-economic optimization of an air-cooled heat exchanger unit</title><author>Alinia Kashani, Amir Hesam ; Maddahi, Alireza ; Hajabdollahi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air-cooled heat exchanger unit</topic><topic>Applied sciences</topic><topic>Design engineering</topic><topic>Design parameters</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multi-objective optimization</topic><topic>NSGA-II</topic><topic>Optimization</topic><topic>Sensitivity analysis</topic><topic>Temperature approach</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal engineering</topic><topic>Total annual cost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alinia Kashani, Amir Hesam</creatorcontrib><creatorcontrib>Maddahi, Alireza</creatorcontrib><creatorcontrib>Hajabdollahi, Hassan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alinia Kashani, Amir Hesam</au><au>Maddahi, Alireza</au><au>Hajabdollahi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-economic optimization of an air-cooled heat exchanger unit</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-05-14</date><risdate>2013</risdate><volume>54</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1359-4311</issn><abstract>Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined.
► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2013.01.014</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2013-05, Vol.54 (1), p.43-55 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513445749 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Air-cooled heat exchanger unit Applied sciences Design engineering Design parameters Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Heat exchangers Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Mathematical analysis Mathematical models Multi-objective optimization NSGA-II Optimization Sensitivity analysis Temperature approach Theoretical studies. Data and constants. Metering Thermal engineering Total annual cost |
title | Thermal-economic optimization of an air-cooled heat exchanger unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-economic%20optimization%20of%20an%20air-cooled%20heat%20exchanger%20unit&rft.jtitle=Applied%20thermal%20engineering&rft.au=Alinia%20Kashani,%20Amir%20Hesam&rft.date=2013-05-14&rft.volume=54&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2013.01.014&rft_dat=%3Cproquest_cross%3E1448724354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448724354&rft_id=info:pmid/&rft_els_id=S1359431113000446&rfr_iscdi=true |