Thermal-economic optimization of an air-cooled heat exchanger unit

Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2013-05, Vol.54 (1), p.43-55
Hauptverfasser: Alinia Kashani, Amir Hesam, Maddahi, Alireza, Hajabdollahi, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 43
container_title Applied thermal engineering
container_volume 54
creator Alinia Kashani, Amir Hesam
Maddahi, Alireza
Hajabdollahi, Hassan
description Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.
doi_str_mv 10.1016/j.applthermaleng.2013.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513445749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431113000446</els_id><sourcerecordid>1448724354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhbNQsD7-QxYKblLnmcmAGy1WhYKbuh5upzftlGQmzqSi_npTWgRXCgfu5jvnwpdll5SMKaHlzWYMXdf0a4wtNOhXY0YoHxM6RBxlI8qlLgSn9CQ7TWlDCGWVEqPsfr5vFGiDD62zeeh617ov6F3weahz8Dm4WNgQGlzma4Q-xw-7Br_CmG-968-z4xqahBeHe5a9Th_mk6di9vL4PLmbFVYy3ReyUgspcFFquQCmecWZqiqtaq0qYEpoRtlSKAoUS7QoRVnrkpSVZqVEAoSfZdf73S6Gty2m3rQuWWwa8Bi2yVBJuRByWPobFaJSTHApBvR2j9oYUopYmy66FuKnocTszJqN-W3W7MwaQofs6leHT5AsNHUEb1362WCKl4JoOXDTPYeDoXeH0STr0Ftcuoi2N8vg_vfwG8RHl9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448724354</pqid></control><display><type>article</type><title>Thermal-economic optimization of an air-cooled heat exchanger unit</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Alinia Kashani, Amir Hesam ; Maddahi, Alireza ; Hajabdollahi, Hassan</creator><creatorcontrib>Alinia Kashani, Amir Hesam ; Maddahi, Alireza ; Hajabdollahi, Hassan</creatorcontrib><description>Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2013.01.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air-cooled heat exchanger unit ; Applied sciences ; Design engineering ; Design parameters ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchangers ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Mathematical analysis ; Mathematical models ; Multi-objective optimization ; NSGA-II ; Optimization ; Sensitivity analysis ; Temperature approach ; Theoretical studies. Data and constants. Metering ; Thermal engineering ; Total annual cost</subject><ispartof>Applied thermal engineering, 2013-05, Vol.54 (1), p.43-55</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</citedby><cites>FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2013.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27364095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alinia Kashani, Amir Hesam</creatorcontrib><creatorcontrib>Maddahi, Alireza</creatorcontrib><creatorcontrib>Hajabdollahi, Hassan</creatorcontrib><title>Thermal-economic optimization of an air-cooled heat exchanger unit</title><title>Applied thermal engineering</title><description>Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.</description><subject>Air-cooled heat exchanger unit</subject><subject>Applied sciences</subject><subject>Design engineering</subject><subject>Design parameters</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multi-objective optimization</subject><subject>NSGA-II</subject><subject>Optimization</subject><subject>Sensitivity analysis</subject><subject>Temperature approach</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal engineering</subject><subject>Total annual cost</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhbNQsD7-QxYKblLnmcmAGy1WhYKbuh5upzftlGQmzqSi_npTWgRXCgfu5jvnwpdll5SMKaHlzWYMXdf0a4wtNOhXY0YoHxM6RBxlI8qlLgSn9CQ7TWlDCGWVEqPsfr5vFGiDD62zeeh617ov6F3weahz8Dm4WNgQGlzma4Q-xw-7Br_CmG-968-z4xqahBeHe5a9Th_mk6di9vL4PLmbFVYy3ReyUgspcFFquQCmecWZqiqtaq0qYEpoRtlSKAoUS7QoRVnrkpSVZqVEAoSfZdf73S6Gty2m3rQuWWwa8Bi2yVBJuRByWPobFaJSTHApBvR2j9oYUopYmy66FuKnocTszJqN-W3W7MwaQofs6leHT5AsNHUEb1362WCKl4JoOXDTPYeDoXeH0STr0Ftcuoi2N8vg_vfwG8RHl9w</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Alinia Kashani, Amir Hesam</creator><creator>Maddahi, Alireza</creator><creator>Hajabdollahi, Hassan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130514</creationdate><title>Thermal-economic optimization of an air-cooled heat exchanger unit</title><author>Alinia Kashani, Amir Hesam ; Maddahi, Alireza ; Hajabdollahi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-587b54eb695ba29383278897f978a2749212d471a1e6ece546f960689265e0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air-cooled heat exchanger unit</topic><topic>Applied sciences</topic><topic>Design engineering</topic><topic>Design parameters</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multi-objective optimization</topic><topic>NSGA-II</topic><topic>Optimization</topic><topic>Sensitivity analysis</topic><topic>Temperature approach</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal engineering</topic><topic>Total annual cost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alinia Kashani, Amir Hesam</creatorcontrib><creatorcontrib>Maddahi, Alireza</creatorcontrib><creatorcontrib>Hajabdollahi, Hassan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alinia Kashani, Amir Hesam</au><au>Maddahi, Alireza</au><au>Hajabdollahi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-economic optimization of an air-cooled heat exchanger unit</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-05-14</date><risdate>2013</risdate><volume>54</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1359-4311</issn><abstract>Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2013.01.014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2013-05, Vol.54 (1), p.43-55
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1513445749
source Elsevier ScienceDirect Journals Complete
subjects Air-cooled heat exchanger unit
Applied sciences
Design engineering
Design parameters
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Mathematical analysis
Mathematical models
Multi-objective optimization
NSGA-II
Optimization
Sensitivity analysis
Temperature approach
Theoretical studies. Data and constants. Metering
Thermal engineering
Total annual cost
title Thermal-economic optimization of an air-cooled heat exchanger unit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-economic%20optimization%20of%20an%20air-cooled%20heat%20exchanger%20unit&rft.jtitle=Applied%20thermal%20engineering&rft.au=Alinia%20Kashani,%20Amir%20Hesam&rft.date=2013-05-14&rft.volume=54&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2013.01.014&rft_dat=%3Cproquest_cross%3E1448724354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448724354&rft_id=info:pmid/&rft_els_id=S1359431113000446&rfr_iscdi=true