Room-temperature characterization of gold self-assembled single electron tunneling devices
[Display omitted] ► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature. Single-electron tunneling devices based on self-ass...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2013-08, Vol.108, p.1-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Microelectronic engineering |
container_volume | 108 |
creator | Fang, Jingyue Qin, Shiqiao Zhang, Xueao Wang, Fei Shao, Zhengzheng Wang, Guang Chang, Shengli |
description | [Display omitted]
► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature.
Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication. |
doi_str_mv | 10.1016/j.mee.2013.01.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513443495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931713000622</els_id><sourcerecordid>1513443495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</originalsourceid><addsrcrecordid>eNqFkE1LAzEQQIMoWKs_wNteBC-7Jptks4snKX5BQRC9eAlpMltTspuapIL-elNaPGouYTJvJjMPoXOCK4JJc7WqBoCqxoRWmFSYsgM0Ia2gJedNe4gmmRFlR4k4RicxrnCOGW4n6O3Z-6FMMKwhqLQJUOh3FZROEOy3StaPhe-LpXemiOD6UsUIw8JBDu24dFCAA51CxtJmHMHlx8LAp9UQT9FRr1yEs_09Ra93ty-zh3L-dP84u5mXmnY0lb2gvOF1I4AAUNIzxmsDbb8AIXhXG4Nxx1uTV1I5swDGSD5dR6nplKKYTtHlru86-I8NxCQHGzU4p0bwmygJJ5Qxyjr-P8oaxjnDuM0o2aE6-BgD9HId7KDClyRYbpXLlczK5Va5xETm-XLNxb69ilq5PqhR2_hbWAvW5LGbzF3vOMhaPi0EGbWFUYOxIduUxts_fvkBZpyWGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464554008</pqid></control><display><type>article</type><title>Room-temperature characterization of gold self-assembled single electron tunneling devices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fang, Jingyue ; Qin, Shiqiao ; Zhang, Xueao ; Wang, Fei ; Shao, Zhengzheng ; Wang, Guang ; Chang, Shengli</creator><creatorcontrib>Fang, Jingyue ; Qin, Shiqiao ; Zhang, Xueao ; Wang, Fei ; Shao, Zhengzheng ; Wang, Guang ; Chang, Shengli</creatorcontrib><description>[Display omitted]
► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature.
Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2013.01.034</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Coulomb Blockade ; Coulomb friction ; Cross-disciplinary physics: materials science; rheology ; Devices ; Electron and ion emission by liquids and solids; impact phenomena ; Electronics ; Exact sciences and technology ; Gold ; Impact phenomena (including electron spectra and sputtering) ; Materials science ; Mathematical analysis ; Methods of nanofabrication ; Molecular electronics, nanoelectronics ; Nanoparticles ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Self assembly ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Single electrons ; Single-electron tunneling ; Tunneling</subject><ispartof>Microelectronic engineering, 2013-08, Vol.108, p.1-4</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</citedby><cites>FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2013.01.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27469336$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Jingyue</creatorcontrib><creatorcontrib>Qin, Shiqiao</creatorcontrib><creatorcontrib>Zhang, Xueao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Shao, Zhengzheng</creatorcontrib><creatorcontrib>Wang, Guang</creatorcontrib><creatorcontrib>Chang, Shengli</creatorcontrib><title>Room-temperature characterization of gold self-assembled single electron tunneling devices</title><title>Microelectronic engineering</title><description>[Display omitted]
► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature.
Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Coulomb Blockade</subject><subject>Coulomb friction</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Methods of nanofabrication</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoparticles</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Self assembly</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Single electrons</subject><subject>Single-electron tunneling</subject><subject>Tunneling</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQQIMoWKs_wNteBC-7Jptks4snKX5BQRC9eAlpMltTspuapIL-elNaPGouYTJvJjMPoXOCK4JJc7WqBoCqxoRWmFSYsgM0Ia2gJedNe4gmmRFlR4k4RicxrnCOGW4n6O3Z-6FMMKwhqLQJUOh3FZROEOy3StaPhe-LpXemiOD6UsUIw8JBDu24dFCAA51CxtJmHMHlx8LAp9UQT9FRr1yEs_09Ra93ty-zh3L-dP84u5mXmnY0lb2gvOF1I4AAUNIzxmsDbb8AIXhXG4Nxx1uTV1I5swDGSD5dR6nplKKYTtHlru86-I8NxCQHGzU4p0bwmygJJ5Qxyjr-P8oaxjnDuM0o2aE6-BgD9HId7KDClyRYbpXLlczK5Va5xETm-XLNxb69ilq5PqhR2_hbWAvW5LGbzF3vOMhaPi0EGbWFUYOxIduUxts_fvkBZpyWGg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Fang, Jingyue</creator><creator>Qin, Shiqiao</creator><creator>Zhang, Xueao</creator><creator>Wang, Fei</creator><creator>Shao, Zhengzheng</creator><creator>Wang, Guang</creator><creator>Chang, Shengli</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Room-temperature characterization of gold self-assembled single electron tunneling devices</title><author>Fang, Jingyue ; Qin, Shiqiao ; Zhang, Xueao ; Wang, Fei ; Shao, Zhengzheng ; Wang, Guang ; Chang, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Coulomb Blockade</topic><topic>Coulomb friction</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Methods of nanofabrication</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoparticles</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Self assembly</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Single electrons</topic><topic>Single-electron tunneling</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jingyue</creatorcontrib><creatorcontrib>Qin, Shiqiao</creatorcontrib><creatorcontrib>Zhang, Xueao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Shao, Zhengzheng</creatorcontrib><creatorcontrib>Wang, Guang</creatorcontrib><creatorcontrib>Chang, Shengli</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Jingyue</au><au>Qin, Shiqiao</au><au>Zhang, Xueao</au><au>Wang, Fei</au><au>Shao, Zhengzheng</au><au>Wang, Guang</au><au>Chang, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature characterization of gold self-assembled single electron tunneling devices</atitle><jtitle>Microelectronic engineering</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>108</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>[Display omitted]
► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature.
Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2013.01.034</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2013-08, Vol.108, p.1-4 |
issn | 0167-9317 1873-5568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513443495 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Coulomb Blockade Coulomb friction Cross-disciplinary physics: materials science rheology Devices Electron and ion emission by liquids and solids impact phenomena Electronics Exact sciences and technology Gold Impact phenomena (including electron spectra and sputtering) Materials science Mathematical analysis Methods of nanofabrication Molecular electronics, nanoelectronics Nanoparticles Nanopowders Nanoscale materials and structures: fabrication and characterization Physics Self assembly Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Single electrons Single-electron tunneling Tunneling |
title | Room-temperature characterization of gold self-assembled single electron tunneling devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20characterization%20of%20gold%20self-assembled%20single%20electron%20tunneling%20devices&rft.jtitle=Microelectronic%20engineering&rft.au=Fang,%20Jingyue&rft.date=2013-08-01&rft.volume=108&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2013.01.034&rft_dat=%3Cproquest_cross%3E1513443495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464554008&rft_id=info:pmid/&rft_els_id=S0167931713000622&rfr_iscdi=true |