Room-temperature characterization of gold self-assembled single electron tunneling devices

[Display omitted] ► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature. Single-electron tunneling devices based on self-ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2013-08, Vol.108, p.1-4
Hauptverfasser: Fang, Jingyue, Qin, Shiqiao, Zhang, Xueao, Wang, Fei, Shao, Zhengzheng, Wang, Guang, Chang, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title Microelectronic engineering
container_volume 108
creator Fang, Jingyue
Qin, Shiqiao
Zhang, Xueao
Wang, Fei
Shao, Zhengzheng
Wang, Guang
Chang, Shengli
description [Display omitted] ► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature. Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.
doi_str_mv 10.1016/j.mee.2013.01.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513443495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931713000622</els_id><sourcerecordid>1513443495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</originalsourceid><addsrcrecordid>eNqFkE1LAzEQQIMoWKs_wNteBC-7Jptks4snKX5BQRC9eAlpMltTspuapIL-elNaPGouYTJvJjMPoXOCK4JJc7WqBoCqxoRWmFSYsgM0Ia2gJedNe4gmmRFlR4k4RicxrnCOGW4n6O3Z-6FMMKwhqLQJUOh3FZROEOy3StaPhe-LpXemiOD6UsUIw8JBDu24dFCAA51CxtJmHMHlx8LAp9UQT9FRr1yEs_09Ra93ty-zh3L-dP84u5mXmnY0lb2gvOF1I4AAUNIzxmsDbb8AIXhXG4Nxx1uTV1I5swDGSD5dR6nplKKYTtHlru86-I8NxCQHGzU4p0bwmygJJ5Qxyjr-P8oaxjnDuM0o2aE6-BgD9HId7KDClyRYbpXLlczK5Va5xETm-XLNxb69ilq5PqhR2_hbWAvW5LGbzF3vOMhaPi0EGbWFUYOxIduUxts_fvkBZpyWGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464554008</pqid></control><display><type>article</type><title>Room-temperature characterization of gold self-assembled single electron tunneling devices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fang, Jingyue ; Qin, Shiqiao ; Zhang, Xueao ; Wang, Fei ; Shao, Zhengzheng ; Wang, Guang ; Chang, Shengli</creator><creatorcontrib>Fang, Jingyue ; Qin, Shiqiao ; Zhang, Xueao ; Wang, Fei ; Shao, Zhengzheng ; Wang, Guang ; Chang, Shengli</creatorcontrib><description>[Display omitted] ► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature. Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2013.01.034</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Coulomb Blockade ; Coulomb friction ; Cross-disciplinary physics: materials science; rheology ; Devices ; Electron and ion emission by liquids and solids; impact phenomena ; Electronics ; Exact sciences and technology ; Gold ; Impact phenomena (including electron spectra and sputtering) ; Materials science ; Mathematical analysis ; Methods of nanofabrication ; Molecular electronics, nanoelectronics ; Nanoparticles ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Self assembly ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Single electrons ; Single-electron tunneling ; Tunneling</subject><ispartof>Microelectronic engineering, 2013-08, Vol.108, p.1-4</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</citedby><cites>FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2013.01.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27469336$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Jingyue</creatorcontrib><creatorcontrib>Qin, Shiqiao</creatorcontrib><creatorcontrib>Zhang, Xueao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Shao, Zhengzheng</creatorcontrib><creatorcontrib>Wang, Guang</creatorcontrib><creatorcontrib>Chang, Shengli</creatorcontrib><title>Room-temperature characterization of gold self-assembled single electron tunneling devices</title><title>Microelectronic engineering</title><description>[Display omitted] ► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature. Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Coulomb Blockade</subject><subject>Coulomb friction</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Methods of nanofabrication</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoparticles</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Self assembly</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Single electrons</subject><subject>Single-electron tunneling</subject><subject>Tunneling</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQQIMoWKs_wNteBC-7Jptks4snKX5BQRC9eAlpMltTspuapIL-elNaPGouYTJvJjMPoXOCK4JJc7WqBoCqxoRWmFSYsgM0Ia2gJedNe4gmmRFlR4k4RicxrnCOGW4n6O3Z-6FMMKwhqLQJUOh3FZROEOy3StaPhe-LpXemiOD6UsUIw8JBDu24dFCAA51CxtJmHMHlx8LAp9UQT9FRr1yEs_09Ra93ty-zh3L-dP84u5mXmnY0lb2gvOF1I4AAUNIzxmsDbb8AIXhXG4Nxx1uTV1I5swDGSD5dR6nplKKYTtHlru86-I8NxCQHGzU4p0bwmygJJ5Qxyjr-P8oaxjnDuM0o2aE6-BgD9HId7KDClyRYbpXLlczK5Va5xETm-XLNxb69ilq5PqhR2_hbWAvW5LGbzF3vOMhaPi0EGbWFUYOxIduUxts_fvkBZpyWGg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Fang, Jingyue</creator><creator>Qin, Shiqiao</creator><creator>Zhang, Xueao</creator><creator>Wang, Fei</creator><creator>Shao, Zhengzheng</creator><creator>Wang, Guang</creator><creator>Chang, Shengli</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Room-temperature characterization of gold self-assembled single electron tunneling devices</title><author>Fang, Jingyue ; Qin, Shiqiao ; Zhang, Xueao ; Wang, Fei ; Shao, Zhengzheng ; Wang, Guang ; Chang, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f73565267e1ee31f4452de8fbe77592dd00958d034a452be4411119933d9aa303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Coulomb Blockade</topic><topic>Coulomb friction</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Methods of nanofabrication</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoparticles</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Self assembly</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Single electrons</topic><topic>Single-electron tunneling</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jingyue</creatorcontrib><creatorcontrib>Qin, Shiqiao</creatorcontrib><creatorcontrib>Zhang, Xueao</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Shao, Zhengzheng</creatorcontrib><creatorcontrib>Wang, Guang</creatorcontrib><creatorcontrib>Chang, Shengli</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Jingyue</au><au>Qin, Shiqiao</au><au>Zhang, Xueao</au><au>Wang, Fei</au><au>Shao, Zhengzheng</au><au>Wang, Guang</au><au>Chang, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature characterization of gold self-assembled single electron tunneling devices</atitle><jtitle>Microelectronic engineering</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>108</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>[Display omitted] ► A single-electron-tunneling device was produced using pre-made gold nanoparticle. ► The nanodevice was fabricated by lithography with self-assembly technique. ► The nanodevice demonstrates Coulomb staircases at room temperature. Single-electron tunneling devices based on self-assembled gold nanoparticles have been fabricated. Two main transport mechanisms were found to interpret the conductive behaviors of the devices. One is attributed to the electron emission, and the other is depended on the bias tunneling with asymmetrical tunnel barriers. The resemblant Coulomb Blockade response was measured at room temperature. The charging energy is estimated to be much larger than the thermal energy. The Coulomb Island sizes calculated from the experimental data are consistent with the size range of the gold nanoparticles used in the self-assembly fabrication.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2013.01.034</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2013-08, Vol.108, p.1-4
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_1513443495
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Coulomb Blockade
Coulomb friction
Cross-disciplinary physics: materials science
rheology
Devices
Electron and ion emission by liquids and solids
impact phenomena
Electronics
Exact sciences and technology
Gold
Impact phenomena (including electron spectra and sputtering)
Materials science
Mathematical analysis
Methods of nanofabrication
Molecular electronics, nanoelectronics
Nanoparticles
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Physics
Self assembly
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Single electrons
Single-electron tunneling
Tunneling
title Room-temperature characterization of gold self-assembled single electron tunneling devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20characterization%20of%20gold%20self-assembled%20single%20electron%20tunneling%20devices&rft.jtitle=Microelectronic%20engineering&rft.au=Fang,%20Jingyue&rft.date=2013-08-01&rft.volume=108&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2013.01.034&rft_dat=%3Cproquest_cross%3E1513443495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464554008&rft_id=info:pmid/&rft_els_id=S0167931713000622&rfr_iscdi=true