Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle
Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, an...
Gespeichert in:
Veröffentlicht in: | Cellular signalling 2013-11, Vol.25 (11), p.2106-2114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2114 |
---|---|
container_issue | 11 |
container_start_page | 2106 |
container_title | Cellular signalling |
container_volume | 25 |
creator | Zhao, Hui Huang, Han-Wei Wu, Jun-Guo Huang, Pei-Yan |
description | Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders.
[Display omitted]
•Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15. |
doi_str_mv | 10.1016/j.cellsig.2013.06.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513440871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898656813001897</els_id><sourcerecordid>1513440871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC0EIpvATwD5yGUGP8Zj-4RQlAdSJCRIuFpeu4d4mRkvtmcV8uvjZReuObW69VW1VIXQO0paSmj_cdM6GMccfraMUN6SviW0e4FWVEnecE35S7QiSqumF706Qac5bwihgvTsNTphXHHKKF2h4fsWXLBjeLQlxBnHAU-hRHcfZ5_qHdvZ453NbhltwvEheDsXPEVf9wIe_7i4uvyGw4zLPWAPM6Td33v-BSOUqp-W7EZ4g14Ndszw9jjP0N3lxe35dXPz9erL-eebxnGtSuPJ4L1cWyW058w65qQXg9CCcqdBMuk7qbxSjFGp175zTrJBE90zSYZeDPwMfTj4blP8vUAuZgp5H5SdIS7Z0OrUdURJ-jzaMa060WlRUXFAXYo5JxjMNoXJpj-GErNvw2zMsQ2zb8OQ3tQ2qu798cWynsD_V_2LvwKfDgDUTHYBkskuwOzAhwSuGB_DMy-eACghnoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429845495</pqid></control><display><type>article</type><title>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Hui ; Huang, Han-Wei ; Wu, Jun-Guo ; Huang, Pei-Yan</creator><creatorcontrib>Zhao, Hui ; Huang, Han-Wei ; Wu, Jun-Guo ; Huang, Pei-Yan</creatorcontrib><description>Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders.
[Display omitted]
•Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.</description><identifier>ISSN: 0898-6568</identifier><identifier>EISSN: 1873-3913</identifier><identifier>DOI: 10.1016/j.cellsig.2013.06.014</identifier><identifier>PMID: 23831211</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Activation ; Animals ; Cellular ; Gene Expression Regulation ; Inflammation - genetics ; Inflammation - metabolism ; Interleukin-15 - genetics ; Interleukin-15 - metabolism ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Male ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Muscle Denervation ; Muscle, Skeletal - injuries ; Muscle, Skeletal - innervation ; Muscle, Skeletal - metabolism ; Muscles ; Musk ; Networks ; Neuromuscular Junction - metabolism ; Oxidants ; Oxidizing agents ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - metabolism ; Receptors, Cholinergic - genetics ; Receptors, Cholinergic - metabolism ; Sciatic Nerve - injuries ; Sciatic Nerve - metabolism ; Signal Transduction ; Signalling ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vascular Endothelial Growth Factor Receptor-1 - genetics ; Vascular Endothelial Growth Factor Receptor-1 - metabolism ; Vascular Endothelial Growth Factor Receptor-2 - genetics ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; VEGFR-1 ; VEGFR-2 ; Xanthine Oxidase - genetics ; Xanthine Oxidase - metabolism ; XO pathway</subject><ispartof>Cellular signalling, 2013-11, Vol.25 (11), p.2106-2114</ispartof><rights>2013</rights><rights>2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</citedby><cites>FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cellsig.2013.06.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23831211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Huang, Han-Wei</creatorcontrib><creatorcontrib>Wu, Jun-Guo</creatorcontrib><creatorcontrib>Huang, Pei-Yan</creatorcontrib><title>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</title><title>Cellular signalling</title><addtitle>Cell Signal</addtitle><description>Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders.
[Display omitted]
•Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.</description><subject>Activation</subject><subject>Animals</subject><subject>Cellular</subject><subject>Gene Expression Regulation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - metabolism</subject><subject>Interleukin-15 - genetics</subject><subject>Interleukin-15 - metabolism</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Male</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Muscle Denervation</subject><subject>Muscle, Skeletal - injuries</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musk</subject><subject>Networks</subject><subject>Neuromuscular Junction - metabolism</subject><subject>Oxidants</subject><subject>Oxidizing agents</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>Receptors, Cholinergic - genetics</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Sciatic Nerve - injuries</subject><subject>Sciatic Nerve - metabolism</subject><subject>Signal Transduction</subject><subject>Signalling</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>VEGFR-1</subject><subject>VEGFR-2</subject><subject>Xanthine Oxidase - genetics</subject><subject>Xanthine Oxidase - metabolism</subject><subject>XO pathway</subject><issn>0898-6568</issn><issn>1873-3913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvFDEQhC0EIpvATwD5yGUGP8Zj-4RQlAdSJCRIuFpeu4d4mRkvtmcV8uvjZReuObW69VW1VIXQO0paSmj_cdM6GMccfraMUN6SviW0e4FWVEnecE35S7QiSqumF706Qac5bwihgvTsNTphXHHKKF2h4fsWXLBjeLQlxBnHAU-hRHcfZ5_qHdvZ453NbhltwvEheDsXPEVf9wIe_7i4uvyGw4zLPWAPM6Td33v-BSOUqp-W7EZ4g14Ndszw9jjP0N3lxe35dXPz9erL-eebxnGtSuPJ4L1cWyW058w65qQXg9CCcqdBMuk7qbxSjFGp175zTrJBE90zSYZeDPwMfTj4blP8vUAuZgp5H5SdIS7Z0OrUdURJ-jzaMa060WlRUXFAXYo5JxjMNoXJpj-GErNvw2zMsQ2zb8OQ3tQ2qu798cWynsD_V_2LvwKfDgDUTHYBkskuwOzAhwSuGB_DMy-eACghnoM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhao, Hui</creator><creator>Huang, Han-Wei</creator><creator>Wu, Jun-Guo</creator><creator>Huang, Pei-Yan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</title><author>Zhao, Hui ; Huang, Han-Wei ; Wu, Jun-Guo ; Huang, Pei-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Cellular</topic><topic>Gene Expression Regulation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - metabolism</topic><topic>Interleukin-15 - genetics</topic><topic>Interleukin-15 - metabolism</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Male</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Muscle Denervation</topic><topic>Muscle, Skeletal - injuries</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musk</topic><topic>Networks</topic><topic>Neuromuscular Junction - metabolism</topic><topic>Oxidants</topic><topic>Oxidizing agents</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>Receptors, Cholinergic - genetics</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Sciatic Nerve - injuries</topic><topic>Sciatic Nerve - metabolism</topic><topic>Signal Transduction</topic><topic>Signalling</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>VEGFR-1</topic><topic>VEGFR-2</topic><topic>Xanthine Oxidase - genetics</topic><topic>Xanthine Oxidase - metabolism</topic><topic>XO pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Huang, Han-Wei</creatorcontrib><creatorcontrib>Wu, Jun-Guo</creatorcontrib><creatorcontrib>Huang, Pei-Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cellular signalling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hui</au><au>Huang, Han-Wei</au><au>Wu, Jun-Guo</au><au>Huang, Pei-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</atitle><jtitle>Cellular signalling</jtitle><addtitle>Cell Signal</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>25</volume><issue>11</issue><spage>2106</spage><epage>2114</epage><pages>2106-2114</pages><issn>0898-6568</issn><eissn>1873-3913</eissn><abstract>Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders.
[Display omitted]
•Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23831211</pmid><doi>10.1016/j.cellsig.2013.06.014</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-6568 |
ispartof | Cellular signalling, 2013-11, Vol.25 (11), p.2106-2114 |
issn | 0898-6568 1873-3913 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513440871 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Activation Animals Cellular Gene Expression Regulation Inflammation - genetics Inflammation - metabolism Interleukin-15 - genetics Interleukin-15 - metabolism Interleukin-1beta - genetics Interleukin-1beta - metabolism Male Mitochondria Mitochondria - genetics Mitochondria - metabolism Muscle Denervation Muscle, Skeletal - injuries Muscle, Skeletal - innervation Muscle, Skeletal - metabolism Muscles Musk Networks Neuromuscular Junction - metabolism Oxidants Oxidizing agents Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism Rats Rats, Sprague-Dawley Receptor Protein-Tyrosine Kinases - genetics Receptor Protein-Tyrosine Kinases - metabolism Receptors, Cholinergic - genetics Receptors, Cholinergic - metabolism Sciatic Nerve - injuries Sciatic Nerve - metabolism Signal Transduction Signalling Transcription Factors - genetics Transcription Factors - metabolism Vascular Endothelial Growth Factor Receptor-1 - genetics Vascular Endothelial Growth Factor Receptor-1 - metabolism Vascular Endothelial Growth Factor Receptor-2 - genetics Vascular Endothelial Growth Factor Receptor-2 - metabolism VEGFR-1 VEGFR-2 Xanthine Oxidase - genetics Xanthine Oxidase - metabolism XO pathway |
title | Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specialization%20of%20mitochondrial%20and%20vascular%20oxidant%20modulated%20VEGFR%20in%20the%20denervated%20skeletal%20muscle&rft.jtitle=Cellular%20signalling&rft.au=Zhao,%20Hui&rft.date=2013-11-01&rft.volume=25&rft.issue=11&rft.spage=2106&rft.epage=2114&rft.pages=2106-2114&rft.issn=0898-6568&rft.eissn=1873-3913&rft_id=info:doi/10.1016/j.cellsig.2013.06.014&rft_dat=%3Cproquest_cross%3E1513440871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429845495&rft_id=info:pmid/23831211&rft_els_id=S0898656813001897&rfr_iscdi=true |