Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle

Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular signalling 2013-11, Vol.25 (11), p.2106-2114
Hauptverfasser: Zhao, Hui, Huang, Han-Wei, Wu, Jun-Guo, Huang, Pei-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2114
container_issue 11
container_start_page 2106
container_title Cellular signalling
container_volume 25
creator Zhao, Hui
Huang, Han-Wei
Wu, Jun-Guo
Huang, Pei-Yan
description Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders. [Display omitted] •Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.
doi_str_mv 10.1016/j.cellsig.2013.06.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513440871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898656813001897</els_id><sourcerecordid>1513440871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC0EIpvATwD5yGUGP8Zj-4RQlAdSJCRIuFpeu4d4mRkvtmcV8uvjZReuObW69VW1VIXQO0paSmj_cdM6GMccfraMUN6SviW0e4FWVEnecE35S7QiSqumF706Qac5bwihgvTsNTphXHHKKF2h4fsWXLBjeLQlxBnHAU-hRHcfZ5_qHdvZ453NbhltwvEheDsXPEVf9wIe_7i4uvyGw4zLPWAPM6Td33v-BSOUqp-W7EZ4g14Ndszw9jjP0N3lxe35dXPz9erL-eebxnGtSuPJ4L1cWyW058w65qQXg9CCcqdBMuk7qbxSjFGp175zTrJBE90zSYZeDPwMfTj4blP8vUAuZgp5H5SdIS7Z0OrUdURJ-jzaMa060WlRUXFAXYo5JxjMNoXJpj-GErNvw2zMsQ2zb8OQ3tQ2qu798cWynsD_V_2LvwKfDgDUTHYBkskuwOzAhwSuGB_DMy-eACghnoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429845495</pqid></control><display><type>article</type><title>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Hui ; Huang, Han-Wei ; Wu, Jun-Guo ; Huang, Pei-Yan</creator><creatorcontrib>Zhao, Hui ; Huang, Han-Wei ; Wu, Jun-Guo ; Huang, Pei-Yan</creatorcontrib><description>Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders. [Display omitted] •Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.</description><identifier>ISSN: 0898-6568</identifier><identifier>EISSN: 1873-3913</identifier><identifier>DOI: 10.1016/j.cellsig.2013.06.014</identifier><identifier>PMID: 23831211</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Activation ; Animals ; Cellular ; Gene Expression Regulation ; Inflammation - genetics ; Inflammation - metabolism ; Interleukin-15 - genetics ; Interleukin-15 - metabolism ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Male ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Muscle Denervation ; Muscle, Skeletal - injuries ; Muscle, Skeletal - innervation ; Muscle, Skeletal - metabolism ; Muscles ; Musk ; Networks ; Neuromuscular Junction - metabolism ; Oxidants ; Oxidizing agents ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - metabolism ; Receptors, Cholinergic - genetics ; Receptors, Cholinergic - metabolism ; Sciatic Nerve - injuries ; Sciatic Nerve - metabolism ; Signal Transduction ; Signalling ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vascular Endothelial Growth Factor Receptor-1 - genetics ; Vascular Endothelial Growth Factor Receptor-1 - metabolism ; Vascular Endothelial Growth Factor Receptor-2 - genetics ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; VEGFR-1 ; VEGFR-2 ; Xanthine Oxidase - genetics ; Xanthine Oxidase - metabolism ; XO pathway</subject><ispartof>Cellular signalling, 2013-11, Vol.25 (11), p.2106-2114</ispartof><rights>2013</rights><rights>2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</citedby><cites>FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cellsig.2013.06.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23831211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Huang, Han-Wei</creatorcontrib><creatorcontrib>Wu, Jun-Guo</creatorcontrib><creatorcontrib>Huang, Pei-Yan</creatorcontrib><title>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</title><title>Cellular signalling</title><addtitle>Cell Signal</addtitle><description>Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders. [Display omitted] •Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.</description><subject>Activation</subject><subject>Animals</subject><subject>Cellular</subject><subject>Gene Expression Regulation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - metabolism</subject><subject>Interleukin-15 - genetics</subject><subject>Interleukin-15 - metabolism</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Male</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Muscle Denervation</subject><subject>Muscle, Skeletal - injuries</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musk</subject><subject>Networks</subject><subject>Neuromuscular Junction - metabolism</subject><subject>Oxidants</subject><subject>Oxidizing agents</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>Receptors, Cholinergic - genetics</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>Sciatic Nerve - injuries</subject><subject>Sciatic Nerve - metabolism</subject><subject>Signal Transduction</subject><subject>Signalling</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-1 - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>VEGFR-1</subject><subject>VEGFR-2</subject><subject>Xanthine Oxidase - genetics</subject><subject>Xanthine Oxidase - metabolism</subject><subject>XO pathway</subject><issn>0898-6568</issn><issn>1873-3913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvFDEQhC0EIpvATwD5yGUGP8Zj-4RQlAdSJCRIuFpeu4d4mRkvtmcV8uvjZReuObW69VW1VIXQO0paSmj_cdM6GMccfraMUN6SviW0e4FWVEnecE35S7QiSqumF706Qac5bwihgvTsNTphXHHKKF2h4fsWXLBjeLQlxBnHAU-hRHcfZ5_qHdvZ453NbhltwvEheDsXPEVf9wIe_7i4uvyGw4zLPWAPM6Td33v-BSOUqp-W7EZ4g14Ndszw9jjP0N3lxe35dXPz9erL-eebxnGtSuPJ4L1cWyW058w65qQXg9CCcqdBMuk7qbxSjFGp175zTrJBE90zSYZeDPwMfTj4blP8vUAuZgp5H5SdIS7Z0OrUdURJ-jzaMa060WlRUXFAXYo5JxjMNoXJpj-GErNvw2zMsQ2zb8OQ3tQ2qu798cWynsD_V_2LvwKfDgDUTHYBkskuwOzAhwSuGB_DMy-eACghnoM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhao, Hui</creator><creator>Huang, Han-Wei</creator><creator>Wu, Jun-Guo</creator><creator>Huang, Pei-Yan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</title><author>Zhao, Hui ; Huang, Han-Wei ; Wu, Jun-Guo ; Huang, Pei-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d0fdd7ba859d32ac2c7d5f59513c9e727d478d8822179bd4cc72f9096270f65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Cellular</topic><topic>Gene Expression Regulation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - metabolism</topic><topic>Interleukin-15 - genetics</topic><topic>Interleukin-15 - metabolism</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Male</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Muscle Denervation</topic><topic>Muscle, Skeletal - injuries</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musk</topic><topic>Networks</topic><topic>Neuromuscular Junction - metabolism</topic><topic>Oxidants</topic><topic>Oxidizing agents</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>Receptors, Cholinergic - genetics</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>Sciatic Nerve - injuries</topic><topic>Sciatic Nerve - metabolism</topic><topic>Signal Transduction</topic><topic>Signalling</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-1 - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>VEGFR-1</topic><topic>VEGFR-2</topic><topic>Xanthine Oxidase - genetics</topic><topic>Xanthine Oxidase - metabolism</topic><topic>XO pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Huang, Han-Wei</creatorcontrib><creatorcontrib>Wu, Jun-Guo</creatorcontrib><creatorcontrib>Huang, Pei-Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cellular signalling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hui</au><au>Huang, Han-Wei</au><au>Wu, Jun-Guo</au><au>Huang, Pei-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle</atitle><jtitle>Cellular signalling</jtitle><addtitle>Cell Signal</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>25</volume><issue>11</issue><spage>2106</spage><epage>2114</epage><pages>2106-2114</pages><issn>0898-6568</issn><eissn>1873-3913</eissn><abstract>Denervation of skeletal muscles results in timely muscular inflammation and muscle-T cell interaction, the cellular events might orchestrate a local circuit involved with IL-1β and IL-15. In the present study, by a combination assay of nerve–muscle preparation, western blot, immuno-precipitation, and radioactive of enzyme activity, we confirmed that mitochondrial and vascular oxidants were considerably up-regulated following gastrocnemius denervation, which was due to gradual decay in mitochondrial biogenesis and XO pathway and accompanied by strengthened IL-1β-VEGFR-2 and IL-15-VEGFR-1 signaling. Intriguingly, these alterations could be triggered by the early established muscular inflammation. In contrast, with prolonged muscle denervation, settings of organelle interconnection were ultimately conveyed by ER bound PTP1B, which promoted VEGFR-1 signaling and contributed to VEGFR-2 activation, and the process could be modulated by mitochondrial and vascular oxidant. Importantly, VEGFR-2 could rescue the disruption of MuSK activity and AchR cluster exerted by IL-1β and IL-15, with PGC-1α and XO involvement. Altogether, extensive network centered on VEGFR-2 signaling was essentially contributed to early recovery processes regarding muscle denervation. Increasing knowledge of this mechanism might open up a conduit for functional response to muscle atrophy, and enable the development of better agents to combat the related disorders. [Display omitted] •Muscle denervation initiated rapid mitochondrial and vascular oxidant production.•Muscle denervation initiated timely IL-1β-VEGFR2 and IL-15-VEGFR1 signaling.•Mitochondrial and vascular oxidant involved in both VEGFR1/2 signaling.•VEGFR1/2 signaling within NMJ could be modulated by PGC-1α and OX pathway.•VEGFR2 signaling could rescue the NMJ disruption of by IL-1β or IL-15.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23831211</pmid><doi>10.1016/j.cellsig.2013.06.014</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-6568
ispartof Cellular signalling, 2013-11, Vol.25 (11), p.2106-2114
issn 0898-6568
1873-3913
language eng
recordid cdi_proquest_miscellaneous_1513440871
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Activation
Animals
Cellular
Gene Expression Regulation
Inflammation - genetics
Inflammation - metabolism
Interleukin-15 - genetics
Interleukin-15 - metabolism
Interleukin-1beta - genetics
Interleukin-1beta - metabolism
Male
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Muscle Denervation
Muscle, Skeletal - injuries
Muscle, Skeletal - innervation
Muscle, Skeletal - metabolism
Muscles
Musk
Networks
Neuromuscular Junction - metabolism
Oxidants
Oxidizing agents
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism
Rats
Rats, Sprague-Dawley
Receptor Protein-Tyrosine Kinases - genetics
Receptor Protein-Tyrosine Kinases - metabolism
Receptors, Cholinergic - genetics
Receptors, Cholinergic - metabolism
Sciatic Nerve - injuries
Sciatic Nerve - metabolism
Signal Transduction
Signalling
Transcription Factors - genetics
Transcription Factors - metabolism
Vascular Endothelial Growth Factor Receptor-1 - genetics
Vascular Endothelial Growth Factor Receptor-1 - metabolism
Vascular Endothelial Growth Factor Receptor-2 - genetics
Vascular Endothelial Growth Factor Receptor-2 - metabolism
VEGFR-1
VEGFR-2
Xanthine Oxidase - genetics
Xanthine Oxidase - metabolism
XO pathway
title Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specialization%20of%20mitochondrial%20and%20vascular%20oxidant%20modulated%20VEGFR%20in%20the%20denervated%20skeletal%20muscle&rft.jtitle=Cellular%20signalling&rft.au=Zhao,%20Hui&rft.date=2013-11-01&rft.volume=25&rft.issue=11&rft.spage=2106&rft.epage=2114&rft.pages=2106-2114&rft.issn=0898-6568&rft.eissn=1873-3913&rft_id=info:doi/10.1016/j.cellsig.2013.06.014&rft_dat=%3Cproquest_cross%3E1513440871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429845495&rft_id=info:pmid/23831211&rft_els_id=S0898656813001897&rfr_iscdi=true