Predicting missing values with biclustering: A coherence-based approach
In this work, a novel biclustering-based approach to data imputation is proposed. This approach is based on the Mean Squared Residue metric, used to evaluate the degree of coherence among objects of a dataset, and presents an algebraic development that allows the modeling of the predictor as a quadr...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2013-05, Vol.46 (5), p.1255-1266 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1266 |
---|---|
container_issue | 5 |
container_start_page | 1255 |
container_title | Pattern recognition |
container_volume | 46 |
creator | de França, F.O. Coelho, G.P. Von Zuben, F.J. |
description | In this work, a novel biclustering-based approach to data imputation is proposed. This approach is based on the Mean Squared Residue metric, used to evaluate the degree of coherence among objects of a dataset, and presents an algebraic development that allows the modeling of the predictor as a quadratic programming problem. The proposed methodology is positioned in the field of missing data, its theoretical aspects are discussed and artificial and real-case scenarios are simulated to evaluate the performance of the technique. Additionally, relevant properties introduced by the biclustering process are also explored in post-imputation analysis, to highlight other advantages of the proposed methodology, more specifically confidence estimation and interpretability of the imputation process.
► A biclustering-based approach to missing data imputation is proposed. ► The technique is based on the Mean Squared Residue (MSR) to evaluate the degree of coherence among objects of the dataset. ► An innovative algebraic development to implement the predictor as a quadratic programming problem is also presented. ► The proposed method explores relevant properties introduced by the biclustering process in post-imputation analysis. |
doi_str_mv | 10.1016/j.patcog.2012.10.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513440403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320312004566</els_id><sourcerecordid>1513440403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2450658889571f8ec89c8863b175460e63c042fa141a74ac36ff690a5938aa823</originalsourceid><addsrcrecordid>eNqFkEtLA0EQhAdRMD7-gYe9CF42ds9jd-JBEPEFgh70PHQ6s2bCmo0zG8V_76wRj3pq6K7qKj4hjhDGCFidLsYr6rl7GUtAmVdjkHJLjNDWqjSo5bYYASgslQS1K_ZSWgBgnQ8jcfMY_SxwH5YvxWtIaZjv1K59Kj5CPy-mgdt16n3Mh7PiouBu7qNfsi-nlPysoNUqdsTzA7HTUJv84c_cF8_XV0-Xt-X9w83d5cV9yRpkX0ptoDLW2ompsbGe7YStrdQUa6Mr8JVi0LIh1Ei1JlZV01QTIDNRlshKtS9ONn9z7Ftu2bvcmn3b0tJ36-TQoNIaNKj_pQpNZRTUg1RvpBy7lKJv3CqGV4qfDsENiN3CbRC7AfGwzYiz7fgngRJT20Racki_XpmbY_2tO9_ofCbzHnx0icMAcRai597NuvB30BeWD5Fn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315653073</pqid></control><display><type>article</type><title>Predicting missing values with biclustering: A coherence-based approach</title><source>Elsevier ScienceDirect Journals</source><creator>de França, F.O. ; Coelho, G.P. ; Von Zuben, F.J.</creator><creatorcontrib>de França, F.O. ; Coelho, G.P. ; Von Zuben, F.J.</creatorcontrib><description>In this work, a novel biclustering-based approach to data imputation is proposed. This approach is based on the Mean Squared Residue metric, used to evaluate the degree of coherence among objects of a dataset, and presents an algebraic development that allows the modeling of the predictor as a quadratic programming problem. The proposed methodology is positioned in the field of missing data, its theoretical aspects are discussed and artificial and real-case scenarios are simulated to evaluate the performance of the technique. Additionally, relevant properties introduced by the biclustering process are also explored in post-imputation analysis, to highlight other advantages of the proposed methodology, more specifically confidence estimation and interpretability of the imputation process.
► A biclustering-based approach to missing data imputation is proposed. ► The technique is based on the Mean Squared Residue (MSR) to evaluate the degree of coherence among objects of the dataset. ► An innovative algebraic development to implement the predictor as a quadratic programming problem is also presented. ► The proposed method explores relevant properties introduced by the biclustering process in post-imputation analysis.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2012.10.022</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Biclustering ; Coherence ; Computer science; control theory; systems ; Computer simulation ; Confidence ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Knowledge discovery ; Mathematical models ; Memory organisation. Data processing ; Methodology ; Missing data imputation ; Pattern recognition ; Quadratic programming ; Residues ; Software</subject><ispartof>Pattern recognition, 2013-05, Vol.46 (5), p.1255-1266</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2450658889571f8ec89c8863b175460e63c042fa141a74ac36ff690a5938aa823</citedby><cites>FETCH-LOGICAL-c402t-2450658889571f8ec89c8863b175460e63c042fa141a74ac36ff690a5938aa823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320312004566$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26901722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de França, F.O.</creatorcontrib><creatorcontrib>Coelho, G.P.</creatorcontrib><creatorcontrib>Von Zuben, F.J.</creatorcontrib><title>Predicting missing values with biclustering: A coherence-based approach</title><title>Pattern recognition</title><description>In this work, a novel biclustering-based approach to data imputation is proposed. This approach is based on the Mean Squared Residue metric, used to evaluate the degree of coherence among objects of a dataset, and presents an algebraic development that allows the modeling of the predictor as a quadratic programming problem. The proposed methodology is positioned in the field of missing data, its theoretical aspects are discussed and artificial and real-case scenarios are simulated to evaluate the performance of the technique. Additionally, relevant properties introduced by the biclustering process are also explored in post-imputation analysis, to highlight other advantages of the proposed methodology, more specifically confidence estimation and interpretability of the imputation process.
► A biclustering-based approach to missing data imputation is proposed. ► The technique is based on the Mean Squared Residue (MSR) to evaluate the degree of coherence among objects of the dataset. ► An innovative algebraic development to implement the predictor as a quadratic programming problem is also presented. ► The proposed method explores relevant properties introduced by the biclustering process in post-imputation analysis.</description><subject>Applied sciences</subject><subject>Biclustering</subject><subject>Coherence</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Confidence</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Knowledge discovery</subject><subject>Mathematical models</subject><subject>Memory organisation. Data processing</subject><subject>Methodology</subject><subject>Missing data imputation</subject><subject>Pattern recognition</subject><subject>Quadratic programming</subject><subject>Residues</subject><subject>Software</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLA0EQhAdRMD7-gYe9CF42ds9jd-JBEPEFgh70PHQ6s2bCmo0zG8V_76wRj3pq6K7qKj4hjhDGCFidLsYr6rl7GUtAmVdjkHJLjNDWqjSo5bYYASgslQS1K_ZSWgBgnQ8jcfMY_SxwH5YvxWtIaZjv1K59Kj5CPy-mgdt16n3Mh7PiouBu7qNfsi-nlPysoNUqdsTzA7HTUJv84c_cF8_XV0-Xt-X9w83d5cV9yRpkX0ptoDLW2ompsbGe7YStrdQUa6Mr8JVi0LIh1Ei1JlZV01QTIDNRlshKtS9ONn9z7Ftu2bvcmn3b0tJ36-TQoNIaNKj_pQpNZRTUg1RvpBy7lKJv3CqGV4qfDsENiN3CbRC7AfGwzYiz7fgngRJT20Racki_XpmbY_2tO9_ofCbzHnx0icMAcRai597NuvB30BeWD5Fn</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>de França, F.O.</creator><creator>Coelho, G.P.</creator><creator>Von Zuben, F.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130501</creationdate><title>Predicting missing values with biclustering: A coherence-based approach</title><author>de França, F.O. ; Coelho, G.P. ; Von Zuben, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2450658889571f8ec89c8863b175460e63c042fa141a74ac36ff690a5938aa823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biclustering</topic><topic>Coherence</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Confidence</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Knowledge discovery</topic><topic>Mathematical models</topic><topic>Memory organisation. Data processing</topic><topic>Methodology</topic><topic>Missing data imputation</topic><topic>Pattern recognition</topic><topic>Quadratic programming</topic><topic>Residues</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de França, F.O.</creatorcontrib><creatorcontrib>Coelho, G.P.</creatorcontrib><creatorcontrib>Von Zuben, F.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de França, F.O.</au><au>Coelho, G.P.</au><au>Von Zuben, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting missing values with biclustering: A coherence-based approach</atitle><jtitle>Pattern recognition</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>46</volume><issue>5</issue><spage>1255</spage><epage>1266</epage><pages>1255-1266</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>In this work, a novel biclustering-based approach to data imputation is proposed. This approach is based on the Mean Squared Residue metric, used to evaluate the degree of coherence among objects of a dataset, and presents an algebraic development that allows the modeling of the predictor as a quadratic programming problem. The proposed methodology is positioned in the field of missing data, its theoretical aspects are discussed and artificial and real-case scenarios are simulated to evaluate the performance of the technique. Additionally, relevant properties introduced by the biclustering process are also explored in post-imputation analysis, to highlight other advantages of the proposed methodology, more specifically confidence estimation and interpretability of the imputation process.
► A biclustering-based approach to missing data imputation is proposed. ► The technique is based on the Mean Squared Residue (MSR) to evaluate the degree of coherence among objects of the dataset. ► An innovative algebraic development to implement the predictor as a quadratic programming problem is also presented. ► The proposed method explores relevant properties introduced by the biclustering process in post-imputation analysis.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2012.10.022</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2013-05, Vol.46 (5), p.1255-1266 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513440403 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Biclustering Coherence Computer science control theory systems Computer simulation Confidence Data processing. List processing. Character string processing Exact sciences and technology Knowledge discovery Mathematical models Memory organisation. Data processing Methodology Missing data imputation Pattern recognition Quadratic programming Residues Software |
title | Predicting missing values with biclustering: A coherence-based approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20missing%20values%20with%20biclustering:%20A%20coherence-based%20approach&rft.jtitle=Pattern%20recognition&rft.au=de%20Fran%C3%A7a,%20F.O.&rft.date=2013-05-01&rft.volume=46&rft.issue=5&rft.spage=1255&rft.epage=1266&rft.pages=1255-1266&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2012.10.022&rft_dat=%3Cproquest_cross%3E1513440403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315653073&rft_id=info:pmid/&rft_els_id=S0031320312004566&rfr_iscdi=true |