Sparse representation and learning in visual recognition: Theory and applications

Sparse representation and learning has been widely used in computational intelligence, machine learning, computer vision and pattern recognition, etc. Mathematically, solving sparse representation and learning involves seeking the sparsest linear combination of basis functions from an overcomplete d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2013-06, Vol.93 (6), p.1408-1425
Hauptverfasser: Cheng, Hong, Liu, Zicheng, Yang, Lu, Chen, Xuewen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1425
container_issue 6
container_start_page 1408
container_title Signal processing
container_volume 93
creator Cheng, Hong
Liu, Zicheng
Yang, Lu
Chen, Xuewen
description Sparse representation and learning has been widely used in computational intelligence, machine learning, computer vision and pattern recognition, etc. Mathematically, solving sparse representation and learning involves seeking the sparsest linear combination of basis functions from an overcomplete dictionary. A rational behind this is the sparse connectivity between nodes in human brain. This paper presents a survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition. It covers both the theory and application aspects. We first review the sparse representation and learning theory including general sparse representation, structured sparse representation, high-dimensional nonlinear learning, Bayesian compressed sensing, sparse subspace learning, non-negative sparse representation, robust sparse representation, and efficient sparse representation. We then introduce the applications of sparse theory to various visual recognition tasks, including feature representation and selection, dictionary learning, Sparsity Induced Similarity (SIS) measures, sparse coding based classification frameworks, and sparsity-related topics. ► This paper presents a thorough review work on sparse representation and learning with emphasis on visual recognition. ► We review the sparse representation theory. ► We also introduce the applications of sparse theory to various visual recognition tasks.
doi_str_mv 10.1016/j.sigpro.2012.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513440241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168412003313</els_id><sourcerecordid>1513440241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-934926939b0bc1f34388629b5315a0951a36a55b6f82048288e89513e0ecd1ea3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gYss3STeeaUTF4IUX1AQsa6HyeSmTkkncSYV-u-dtq5dXbh858D5CLmmUFCg5e26iG41hL5gQFkBVQGUnpAJVTOWz6ScnZJJwmROSyXOyUWMawCgvIQJef8YTIiYBRwCRvSjGV3vM-ObrEMTvPOrzPnsx8Wt6RJl-5V3e-QuW35hH3YH1AxD5-whGi_JWWu6iFd_d0o-nx6X85d88fb8On9Y5FaAHPOKi4qVFa9qqC1tueBKlayqJafSQCWp4aWRsi5bxUAophSq9OUIaBuKhk_JzbE3Df_eYhz1xkWLXWc89tuoaYKFACZoQsURtaGPMWCrh-A2Juw0Bb03qNf6aFDvDWqodDKYYvfHGKYZPw6Djtaht9i4JGLUTe_-L_gFIVB7kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513440241</pqid></control><display><type>article</type><title>Sparse representation and learning in visual recognition: Theory and applications</title><source>Elsevier ScienceDirect Journals</source><creator>Cheng, Hong ; Liu, Zicheng ; Yang, Lu ; Chen, Xuewen</creator><creatorcontrib>Cheng, Hong ; Liu, Zicheng ; Yang, Lu ; Chen, Xuewen</creatorcontrib><description>Sparse representation and learning has been widely used in computational intelligence, machine learning, computer vision and pattern recognition, etc. Mathematically, solving sparse representation and learning involves seeking the sparsest linear combination of basis functions from an overcomplete dictionary. A rational behind this is the sparse connectivity between nodes in human brain. This paper presents a survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition. It covers both the theory and application aspects. We first review the sparse representation and learning theory including general sparse representation, structured sparse representation, high-dimensional nonlinear learning, Bayesian compressed sensing, sparse subspace learning, non-negative sparse representation, robust sparse representation, and efficient sparse representation. We then introduce the applications of sparse theory to various visual recognition tasks, including feature representation and selection, dictionary learning, Sparsity Induced Similarity (SIS) measures, sparse coding based classification frameworks, and sparsity-related topics. ► This paper presents a thorough review work on sparse representation and learning with emphasis on visual recognition. ► We review the sparse representation theory. ► We also introduce the applications of sparse theory to various visual recognition tasks.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2012.09.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Basis functions ; Dictionaries ; Intelligence ; Learning ; Recognition ; Representations ; Similarity ; Sparse representation ; Sparse subspace learning ; Sparsity Induced Similarity ; Structured sparsity ; Visual ; Visual recognition</subject><ispartof>Signal processing, 2013-06, Vol.93 (6), p.1408-1425</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-934926939b0bc1f34388629b5315a0951a36a55b6f82048288e89513e0ecd1ea3</citedby><cites>FETCH-LOGICAL-c405t-934926939b0bc1f34388629b5315a0951a36a55b6f82048288e89513e0ecd1ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2012.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Cheng, Hong</creatorcontrib><creatorcontrib>Liu, Zicheng</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Chen, Xuewen</creatorcontrib><title>Sparse representation and learning in visual recognition: Theory and applications</title><title>Signal processing</title><description>Sparse representation and learning has been widely used in computational intelligence, machine learning, computer vision and pattern recognition, etc. Mathematically, solving sparse representation and learning involves seeking the sparsest linear combination of basis functions from an overcomplete dictionary. A rational behind this is the sparse connectivity between nodes in human brain. This paper presents a survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition. It covers both the theory and application aspects. We first review the sparse representation and learning theory including general sparse representation, structured sparse representation, high-dimensional nonlinear learning, Bayesian compressed sensing, sparse subspace learning, non-negative sparse representation, robust sparse representation, and efficient sparse representation. We then introduce the applications of sparse theory to various visual recognition tasks, including feature representation and selection, dictionary learning, Sparsity Induced Similarity (SIS) measures, sparse coding based classification frameworks, and sparsity-related topics. ► This paper presents a thorough review work on sparse representation and learning with emphasis on visual recognition. ► We review the sparse representation theory. ► We also introduce the applications of sparse theory to various visual recognition tasks.</description><subject>Basis functions</subject><subject>Dictionaries</subject><subject>Intelligence</subject><subject>Learning</subject><subject>Recognition</subject><subject>Representations</subject><subject>Similarity</subject><subject>Sparse representation</subject><subject>Sparse subspace learning</subject><subject>Sparsity Induced Similarity</subject><subject>Structured sparsity</subject><subject>Visual</subject><subject>Visual recognition</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gYss3STeeaUTF4IUX1AQsa6HyeSmTkkncSYV-u-dtq5dXbh858D5CLmmUFCg5e26iG41hL5gQFkBVQGUnpAJVTOWz6ScnZJJwmROSyXOyUWMawCgvIQJef8YTIiYBRwCRvSjGV3vM-ObrEMTvPOrzPnsx8Wt6RJl-5V3e-QuW35hH3YH1AxD5-whGi_JWWu6iFd_d0o-nx6X85d88fb8On9Y5FaAHPOKi4qVFa9qqC1tueBKlayqJafSQCWp4aWRsi5bxUAophSq9OUIaBuKhk_JzbE3Df_eYhz1xkWLXWc89tuoaYKFACZoQsURtaGPMWCrh-A2Juw0Bb03qNf6aFDvDWqodDKYYvfHGKYZPw6Djtaht9i4JGLUTe_-L_gFIVB7kQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Cheng, Hong</creator><creator>Liu, Zicheng</creator><creator>Yang, Lu</creator><creator>Chen, Xuewen</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201306</creationdate><title>Sparse representation and learning in visual recognition: Theory and applications</title><author>Cheng, Hong ; Liu, Zicheng ; Yang, Lu ; Chen, Xuewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-934926939b0bc1f34388629b5315a0951a36a55b6f82048288e89513e0ecd1ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Basis functions</topic><topic>Dictionaries</topic><topic>Intelligence</topic><topic>Learning</topic><topic>Recognition</topic><topic>Representations</topic><topic>Similarity</topic><topic>Sparse representation</topic><topic>Sparse subspace learning</topic><topic>Sparsity Induced Similarity</topic><topic>Structured sparsity</topic><topic>Visual</topic><topic>Visual recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Hong</creatorcontrib><creatorcontrib>Liu, Zicheng</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Chen, Xuewen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Hong</au><au>Liu, Zicheng</au><au>Yang, Lu</au><au>Chen, Xuewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse representation and learning in visual recognition: Theory and applications</atitle><jtitle>Signal processing</jtitle><date>2013-06</date><risdate>2013</risdate><volume>93</volume><issue>6</issue><spage>1408</spage><epage>1425</epage><pages>1408-1425</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>Sparse representation and learning has been widely used in computational intelligence, machine learning, computer vision and pattern recognition, etc. Mathematically, solving sparse representation and learning involves seeking the sparsest linear combination of basis functions from an overcomplete dictionary. A rational behind this is the sparse connectivity between nodes in human brain. This paper presents a survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition. It covers both the theory and application aspects. We first review the sparse representation and learning theory including general sparse representation, structured sparse representation, high-dimensional nonlinear learning, Bayesian compressed sensing, sparse subspace learning, non-negative sparse representation, robust sparse representation, and efficient sparse representation. We then introduce the applications of sparse theory to various visual recognition tasks, including feature representation and selection, dictionary learning, Sparsity Induced Similarity (SIS) measures, sparse coding based classification frameworks, and sparsity-related topics. ► This paper presents a thorough review work on sparse representation and learning with emphasis on visual recognition. ► We review the sparse representation theory. ► We also introduce the applications of sparse theory to various visual recognition tasks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2012.09.011</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2013-06, Vol.93 (6), p.1408-1425
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_1513440241
source Elsevier ScienceDirect Journals
subjects Basis functions
Dictionaries
Intelligence
Learning
Recognition
Representations
Similarity
Sparse representation
Sparse subspace learning
Sparsity Induced Similarity
Structured sparsity
Visual
Visual recognition
title Sparse representation and learning in visual recognition: Theory and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20representation%20and%20learning%20in%20visual%20recognition:%20Theory%20and%20applications&rft.jtitle=Signal%20processing&rft.au=Cheng,%20Hong&rft.date=2013-06&rft.volume=93&rft.issue=6&rft.spage=1408&rft.epage=1425&rft.pages=1408-1425&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2012.09.011&rft_dat=%3Cproquest_cross%3E1513440241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513440241&rft_id=info:pmid/&rft_els_id=S0165168412003313&rfr_iscdi=true