Restricted non-separable planar maps and some pattern avoiding permutations
Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the av...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2013-11, Vol.161 (16-17), p.2514-2526 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2526 |
---|---|
container_issue | 16-17 |
container_start_page | 2514 |
container_title | Discrete Applied Mathematics |
container_volume | 161 |
creator | Kitaev, Sergey Salimov, Pavel Severs, Christopher Ulfarsson, Henning |
description | Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results. |
doi_str_mv | 10.1016/j.dam.2013.01.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513440078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13000280</els_id><sourcerecordid>1513440078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89emnNpG2a4kkW_-GCIAreQppMJcs2qUlW8NubZT07l2GG94Y3P0IugVZAgV9vKqOmilGoKwoVpc0RWYDoWMm7Do7JImt4yUB8nJKzGDeUUsjTgjy_YkzB6oSmcN6VEWcV1LDFYt4qp0IxqTkWypki-ikvVUoYXKG-vTXWfRYzhmmXVLLexXNyMqptxIu_viTv93dvq8dy_fLwtLpdl7ru6lSKXH2rzUD5UBvdM4PjMDSs48BYL1jLWdsrxgaRty3jWowGeCcEa6AxuqmX5Opwdw7-a5fzy8lGjdscGP0uSmihbhpKO5GlcJDq4GMMOMo52EmFHwlU7sHJjczg5B6cpCAzuOy5OXgw__BtMcioLTqNxgbUSRpv_3H_AlGYdeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513440078</pqid></control><display><type>article</type><title>Restricted non-separable planar maps and some pattern avoiding permutations</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kitaev, Sergey ; Salimov, Pavel ; Severs, Christopher ; Ulfarsson, Henning</creator><creatorcontrib>Kitaev, Sergey ; Salimov, Pavel ; Severs, Christopher ; Ulfarsson, Henning</creatorcontrib><description>Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.01.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Avoidance ; Description tree ; Enumeration ; Labels ; Lower bounds ; Mathematical analysis ; Permutation pattern ; Permutations ; Planar map</subject><ispartof>Discrete Applied Mathematics, 2013-11, Vol.161 (16-17), p.2514-2526</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</citedby><cites>FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2013.01.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Kitaev, Sergey</creatorcontrib><creatorcontrib>Salimov, Pavel</creatorcontrib><creatorcontrib>Severs, Christopher</creatorcontrib><creatorcontrib>Ulfarsson, Henning</creatorcontrib><title>Restricted non-separable planar maps and some pattern avoiding permutations</title><title>Discrete Applied Mathematics</title><description>Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.</description><subject>Asymptotic properties</subject><subject>Avoidance</subject><subject>Description tree</subject><subject>Enumeration</subject><subject>Labels</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Permutation pattern</subject><subject>Permutations</subject><subject>Planar map</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89emnNpG2a4kkW_-GCIAreQppMJcs2qUlW8NubZT07l2GG94Y3P0IugVZAgV9vKqOmilGoKwoVpc0RWYDoWMm7Do7JImt4yUB8nJKzGDeUUsjTgjy_YkzB6oSmcN6VEWcV1LDFYt4qp0IxqTkWypki-ikvVUoYXKG-vTXWfRYzhmmXVLLexXNyMqptxIu_viTv93dvq8dy_fLwtLpdl7ru6lSKXH2rzUD5UBvdM4PjMDSs48BYL1jLWdsrxgaRty3jWowGeCcEa6AxuqmX5Opwdw7-a5fzy8lGjdscGP0uSmihbhpKO5GlcJDq4GMMOMo52EmFHwlU7sHJjczg5B6cpCAzuOy5OXgw__BtMcioLTqNxgbUSRpv_3H_AlGYdeM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kitaev, Sergey</creator><creator>Salimov, Pavel</creator><creator>Severs, Christopher</creator><creator>Ulfarsson, Henning</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Restricted non-separable planar maps and some pattern avoiding permutations</title><author>Kitaev, Sergey ; Salimov, Pavel ; Severs, Christopher ; Ulfarsson, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Avoidance</topic><topic>Description tree</topic><topic>Enumeration</topic><topic>Labels</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Permutation pattern</topic><topic>Permutations</topic><topic>Planar map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitaev, Sergey</creatorcontrib><creatorcontrib>Salimov, Pavel</creatorcontrib><creatorcontrib>Severs, Christopher</creatorcontrib><creatorcontrib>Ulfarsson, Henning</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitaev, Sergey</au><au>Salimov, Pavel</au><au>Severs, Christopher</au><au>Ulfarsson, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restricted non-separable planar maps and some pattern avoiding permutations</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>161</volume><issue>16-17</issue><spage>2514</spage><epage>2526</epage><pages>2514-2526</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.01.004</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2013-11, Vol.161 (16-17), p.2514-2526 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513440078 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Asymptotic properties Avoidance Description tree Enumeration Labels Lower bounds Mathematical analysis Permutation pattern Permutations Planar map |
title | Restricted non-separable planar maps and some pattern avoiding permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restricted%20non-separable%20planar%20maps%20and%20some%20pattern%20avoiding%20permutations&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Kitaev,%20Sergey&rft.date=2013-11-01&rft.volume=161&rft.issue=16-17&rft.spage=2514&rft.epage=2526&rft.pages=2514-2526&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.01.004&rft_dat=%3Cproquest_cross%3E1513440078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513440078&rft_id=info:pmid/&rft_els_id=S0166218X13000280&rfr_iscdi=true |