Restricted non-separable planar maps and some pattern avoiding permutations

Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2013-11, Vol.161 (16-17), p.2514-2526
Hauptverfasser: Kitaev, Sergey, Salimov, Pavel, Severs, Christopher, Ulfarsson, Henning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2526
container_issue 16-17
container_start_page 2514
container_title Discrete Applied Mathematics
container_volume 161
creator Kitaev, Sergey
Salimov, Pavel
Severs, Christopher
Ulfarsson, Henning
description Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.
doi_str_mv 10.1016/j.dam.2013.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513440078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13000280</els_id><sourcerecordid>1513440078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG89emnNpG2a4kkW_-GCIAreQppMJcs2qUlW8NubZT07l2GG94Y3P0IugVZAgV9vKqOmilGoKwoVpc0RWYDoWMm7Do7JImt4yUB8nJKzGDeUUsjTgjy_YkzB6oSmcN6VEWcV1LDFYt4qp0IxqTkWypki-ikvVUoYXKG-vTXWfRYzhmmXVLLexXNyMqptxIu_viTv93dvq8dy_fLwtLpdl7ru6lSKXH2rzUD5UBvdM4PjMDSs48BYL1jLWdsrxgaRty3jWowGeCcEa6AxuqmX5Opwdw7-a5fzy8lGjdscGP0uSmihbhpKO5GlcJDq4GMMOMo52EmFHwlU7sHJjczg5B6cpCAzuOy5OXgw__BtMcioLTqNxgbUSRpv_3H_AlGYdeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513440078</pqid></control><display><type>article</type><title>Restricted non-separable planar maps and some pattern avoiding permutations</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kitaev, Sergey ; Salimov, Pavel ; Severs, Christopher ; Ulfarsson, Henning</creator><creatorcontrib>Kitaev, Sergey ; Salimov, Pavel ; Severs, Christopher ; Ulfarsson, Henning</creatorcontrib><description>Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.01.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Avoidance ; Description tree ; Enumeration ; Labels ; Lower bounds ; Mathematical analysis ; Permutation pattern ; Permutations ; Planar map</subject><ispartof>Discrete Applied Mathematics, 2013-11, Vol.161 (16-17), p.2514-2526</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</citedby><cites>FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2013.01.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Kitaev, Sergey</creatorcontrib><creatorcontrib>Salimov, Pavel</creatorcontrib><creatorcontrib>Severs, Christopher</creatorcontrib><creatorcontrib>Ulfarsson, Henning</creatorcontrib><title>Restricted non-separable planar maps and some pattern avoiding permutations</title><title>Discrete Applied Mathematics</title><description>Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.</description><subject>Asymptotic properties</subject><subject>Avoidance</subject><subject>Description tree</subject><subject>Enumeration</subject><subject>Labels</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Permutation pattern</subject><subject>Permutations</subject><subject>Planar map</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG89emnNpG2a4kkW_-GCIAreQppMJcs2qUlW8NubZT07l2GG94Y3P0IugVZAgV9vKqOmilGoKwoVpc0RWYDoWMm7Do7JImt4yUB8nJKzGDeUUsjTgjy_YkzB6oSmcN6VEWcV1LDFYt4qp0IxqTkWypki-ikvVUoYXKG-vTXWfRYzhmmXVLLexXNyMqptxIu_viTv93dvq8dy_fLwtLpdl7ru6lSKXH2rzUD5UBvdM4PjMDSs48BYL1jLWdsrxgaRty3jWowGeCcEa6AxuqmX5Opwdw7-a5fzy8lGjdscGP0uSmihbhpKO5GlcJDq4GMMOMo52EmFHwlU7sHJjczg5B6cpCAzuOy5OXgw__BtMcioLTqNxgbUSRpv_3H_AlGYdeM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kitaev, Sergey</creator><creator>Salimov, Pavel</creator><creator>Severs, Christopher</creator><creator>Ulfarsson, Henning</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Restricted non-separable planar maps and some pattern avoiding permutations</title><author>Kitaev, Sergey ; Salimov, Pavel ; Severs, Christopher ; Ulfarsson, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-888895cdb06b3dc92defbb427612298256259a22b8bb4526c8fd167882414dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Avoidance</topic><topic>Description tree</topic><topic>Enumeration</topic><topic>Labels</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Permutation pattern</topic><topic>Permutations</topic><topic>Planar map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitaev, Sergey</creatorcontrib><creatorcontrib>Salimov, Pavel</creatorcontrib><creatorcontrib>Severs, Christopher</creatorcontrib><creatorcontrib>Ulfarsson, Henning</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitaev, Sergey</au><au>Salimov, Pavel</au><au>Severs, Christopher</au><au>Ulfarsson, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restricted non-separable planar maps and some pattern avoiding permutations</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>161</volume><issue>16-17</issue><spage>2514</spage><epage>2526</epage><pages>2514-2526</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, β(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we study how certain structures in planar maps transfer to trees and permutations via the bijections. More precisely, we show that the number of 2-faces in a map equals the number of nodes in the corresponding β(1,0)-tree that are single children with maximum label; give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrímsson in 2009, to show that 2-face-free maps correspond to permutations avoiding certain mesh patterns. Finally, we give asymptotics for some of our enumerative results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.01.004</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2013-11, Vol.161 (16-17), p.2514-2526
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1513440078
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Asymptotic properties
Avoidance
Description tree
Enumeration
Labels
Lower bounds
Mathematical analysis
Permutation pattern
Permutations
Planar map
title Restricted non-separable planar maps and some pattern avoiding permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restricted%20non-separable%20planar%20maps%20and%20some%20pattern%20avoiding%20permutations&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Kitaev,%20Sergey&rft.date=2013-11-01&rft.volume=161&rft.issue=16-17&rft.spage=2514&rft.epage=2526&rft.pages=2514-2526&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.01.004&rft_dat=%3Cproquest_cross%3E1513440078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513440078&rft_id=info:pmid/&rft_els_id=S0166218X13000280&rfr_iscdi=true