Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum

•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization. Nanocrystalline Cu–Ta alloys belong to an emerging class of immisci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2013-10, Vol.573, p.142-150
Hauptverfasser: Darling, K.A., Roberts, A.J., Mishin, Y., Mathaudhu, S.N., Kecskes, L.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 142
container_title Journal of alloys and compounds
container_volume 573
creator Darling, K.A.
Roberts, A.J.
Mishin, Y.
Mathaudhu, S.N.
Kecskes, L.J.
description •A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization. Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.
doi_str_mv 10.1016/j.jallcom.2013.03.177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513436648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838813007081</els_id><sourcerecordid>1464594154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVoIW7an1DQJdDLbvS1svZUSmjTQiCX9ixG8mwio5Ucad3i_PrI2PSakxjN884wDyGfOes54_pm228hRp_nXjAueyZ7vl5fkBU3a9kprcd3ZMVGMXRGGnNJPtS6ZYzxUfIVgbsCIdEaXpDWBVyI4QWWkBPNE02Qsi-H9h9jSEh93u2wUFjoU3h8ogvOrYRlX7BSd6CNyoeQHum_sLQupJbbzx_J-wlixU_n94r8-fH99-3P7v7h7tftt_vOKzYsneZ-MgjSODZorsFNWpjRCD3CiMg8biZnFA4b4MY4h2IzgRONB-dBCSGvyJfT3F3Jz3usi51D9RgjJMz7avnApZJaK_M2qrQaRsUH1dDhhPqSay042V0JM5SD5cwe7dutPdu3R_uWSdvst9z1eQVUD3EqkHyo_8NirUZuxuP8rycOm5q_AYutPmBq54aCfrGbHN7Y9Aoh9KAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464594154</pqid></control><display><type>article</type><title>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</title><source>Elsevier ScienceDirect Journals</source><creator>Darling, K.A. ; Roberts, A.J. ; Mishin, Y. ; Mathaudhu, S.N. ; Kecskes, L.J.</creator><creatorcontrib>Darling, K.A. ; Roberts, A.J. ; Mishin, Y. ; Mathaudhu, S.N. ; Kecskes, L.J.</creatorcontrib><description>•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization. Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2013.03.177</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alloying ; Alloys ; Annealing ; ANNEALING PROCESSES ; Applied sciences ; Binary alloys ; Condensed matter: structure, mechanical and thermal properties ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; CRYSTAL STRUCTURE ; DIFFUSION ; ELEVATED TEMPERATURE ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Grain-growth ; HARDNESS ; Heat treatment ; Immiscible systems ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; MELTING POINT ; Metals. Metallurgy ; Microstructure ; MICROSTRUCTURES ; Nanocrystalline alloys ; Nanocrystals ; Physics ; Production techniques ; Solubility, segregation, and mixing; phase separation ; Stability ; Stabilization ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Thermal analysis ; Vickers microhardness</subject><ispartof>Journal of alloys and compounds, 2013-10, Vol.573, p.142-150</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</citedby><cites>FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838813007081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27491894$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Darling, K.A.</creatorcontrib><creatorcontrib>Roberts, A.J.</creatorcontrib><creatorcontrib>Mishin, Y.</creatorcontrib><creatorcontrib>Mathaudhu, S.N.</creatorcontrib><creatorcontrib>Kecskes, L.J.</creatorcontrib><title>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</title><title>Journal of alloys and compounds</title><description>•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization. Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Annealing</subject><subject>ANNEALING PROCESSES</subject><subject>Applied sciences</subject><subject>Binary alloys</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>CRYSTAL STRUCTURE</subject><subject>DIFFUSION</subject><subject>ELEVATED TEMPERATURE</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Grain-growth</subject><subject>HARDNESS</subject><subject>Heat treatment</subject><subject>Immiscible systems</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>MELTING POINT</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Nanocrystalline alloys</subject><subject>Nanocrystals</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Thermal analysis</subject><subject>Vickers microhardness</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVoIW7an1DQJdDLbvS1svZUSmjTQiCX9ixG8mwio5Ucad3i_PrI2PSakxjN884wDyGfOes54_pm228hRp_nXjAueyZ7vl5fkBU3a9kprcd3ZMVGMXRGGnNJPtS6ZYzxUfIVgbsCIdEaXpDWBVyI4QWWkBPNE02Qsi-H9h9jSEh93u2wUFjoU3h8ogvOrYRlX7BSd6CNyoeQHum_sLQupJbbzx_J-wlixU_n94r8-fH99-3P7v7h7tftt_vOKzYsneZ-MgjSODZorsFNWpjRCD3CiMg8biZnFA4b4MY4h2IzgRONB-dBCSGvyJfT3F3Jz3usi51D9RgjJMz7avnApZJaK_M2qrQaRsUH1dDhhPqSay042V0JM5SD5cwe7dutPdu3R_uWSdvst9z1eQVUD3EqkHyo_8NirUZuxuP8rycOm5q_AYutPmBq54aCfrGbHN7Y9Aoh9KAn</recordid><startdate>20131005</startdate><enddate>20131005</enddate><creator>Darling, K.A.</creator><creator>Roberts, A.J.</creator><creator>Mishin, Y.</creator><creator>Mathaudhu, S.N.</creator><creator>Kecskes, L.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20131005</creationdate><title>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</title><author>Darling, K.A. ; Roberts, A.J. ; Mishin, Y. ; Mathaudhu, S.N. ; Kecskes, L.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Annealing</topic><topic>ANNEALING PROCESSES</topic><topic>Applied sciences</topic><topic>Binary alloys</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>CRYSTAL STRUCTURE</topic><topic>DIFFUSION</topic><topic>ELEVATED TEMPERATURE</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Grain-growth</topic><topic>HARDNESS</topic><topic>Heat treatment</topic><topic>Immiscible systems</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>MELTING POINT</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Nanocrystalline alloys</topic><topic>Nanocrystals</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Thermal analysis</topic><topic>Vickers microhardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darling, K.A.</creatorcontrib><creatorcontrib>Roberts, A.J.</creatorcontrib><creatorcontrib>Mishin, Y.</creatorcontrib><creatorcontrib>Mathaudhu, S.N.</creatorcontrib><creatorcontrib>Kecskes, L.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darling, K.A.</au><au>Roberts, A.J.</au><au>Mishin, Y.</au><au>Mathaudhu, S.N.</au><au>Kecskes, L.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2013-10-05</date><risdate>2013</risdate><volume>573</volume><spage>142</spage><epage>150</epage><pages>142-150</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization. Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2013.03.177</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2013-10, Vol.573, p.142-150
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1513436648
source Elsevier ScienceDirect Journals
subjects Alloying
Alloys
Annealing
ANNEALING PROCESSES
Applied sciences
Binary alloys
Condensed matter: structure, mechanical and thermal properties
Copper
COPPER ALLOYS (40 TO 99.3 CU)
Copper base alloys
CRYSTAL STRUCTURE
DIFFUSION
ELEVATED TEMPERATURE
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Grain-growth
HARDNESS
Heat treatment
Immiscible systems
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
MELTING POINT
Metals. Metallurgy
Microstructure
MICROSTRUCTURES
Nanocrystalline alloys
Nanocrystals
Physics
Production techniques
Solubility, segregation, and mixing
phase separation
Stability
Stabilization
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Thermal analysis
Vickers microhardness
title Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20size%20stabilization%20of%20nanocrystalline%20copper%20at%20high%20temperatures%20by%20alloying%20with%20tantalum&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Darling,%20K.A.&rft.date=2013-10-05&rft.volume=573&rft.spage=142&rft.epage=150&rft.pages=142-150&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2013.03.177&rft_dat=%3Cproquest_cross%3E1464594154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464594154&rft_id=info:pmid/&rft_els_id=S0925838813007081&rfr_iscdi=true