Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum
•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization. Nanocrystalline Cu–Ta alloys belong to an emerging class of immisci...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2013-10, Vol.573, p.142-150 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 142 |
container_title | Journal of alloys and compounds |
container_volume | 573 |
creator | Darling, K.A. Roberts, A.J. Mishin, Y. Mathaudhu, S.N. Kecskes, L.J. |
description | •A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization.
Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa. |
doi_str_mv | 10.1016/j.jallcom.2013.03.177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513436648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838813007081</els_id><sourcerecordid>1464594154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVoIW7an1DQJdDLbvS1svZUSmjTQiCX9ixG8mwio5Ucad3i_PrI2PSakxjN884wDyGfOes54_pm228hRp_nXjAueyZ7vl5fkBU3a9kprcd3ZMVGMXRGGnNJPtS6ZYzxUfIVgbsCIdEaXpDWBVyI4QWWkBPNE02Qsi-H9h9jSEh93u2wUFjoU3h8ogvOrYRlX7BSd6CNyoeQHum_sLQupJbbzx_J-wlixU_n94r8-fH99-3P7v7h7tftt_vOKzYsneZ-MgjSODZorsFNWpjRCD3CiMg8biZnFA4b4MY4h2IzgRONB-dBCSGvyJfT3F3Jz3usi51D9RgjJMz7avnApZJaK_M2qrQaRsUH1dDhhPqSay042V0JM5SD5cwe7dutPdu3R_uWSdvst9z1eQVUD3EqkHyo_8NirUZuxuP8rycOm5q_AYutPmBq54aCfrGbHN7Y9Aoh9KAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464594154</pqid></control><display><type>article</type><title>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</title><source>Elsevier ScienceDirect Journals</source><creator>Darling, K.A. ; Roberts, A.J. ; Mishin, Y. ; Mathaudhu, S.N. ; Kecskes, L.J.</creator><creatorcontrib>Darling, K.A. ; Roberts, A.J. ; Mishin, Y. ; Mathaudhu, S.N. ; Kecskes, L.J.</creatorcontrib><description>•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization.
Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2013.03.177</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alloying ; Alloys ; Annealing ; ANNEALING PROCESSES ; Applied sciences ; Binary alloys ; Condensed matter: structure, mechanical and thermal properties ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; CRYSTAL STRUCTURE ; DIFFUSION ; ELEVATED TEMPERATURE ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Grain-growth ; HARDNESS ; Heat treatment ; Immiscible systems ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; MELTING POINT ; Metals. Metallurgy ; Microstructure ; MICROSTRUCTURES ; Nanocrystalline alloys ; Nanocrystals ; Physics ; Production techniques ; Solubility, segregation, and mixing; phase separation ; Stability ; Stabilization ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Thermal analysis ; Vickers microhardness</subject><ispartof>Journal of alloys and compounds, 2013-10, Vol.573, p.142-150</ispartof><rights>2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</citedby><cites>FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838813007081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27491894$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Darling, K.A.</creatorcontrib><creatorcontrib>Roberts, A.J.</creatorcontrib><creatorcontrib>Mishin, Y.</creatorcontrib><creatorcontrib>Mathaudhu, S.N.</creatorcontrib><creatorcontrib>Kecskes, L.J.</creatorcontrib><title>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</title><title>Journal of alloys and compounds</title><description>•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization.
Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Annealing</subject><subject>ANNEALING PROCESSES</subject><subject>Applied sciences</subject><subject>Binary alloys</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>CRYSTAL STRUCTURE</subject><subject>DIFFUSION</subject><subject>ELEVATED TEMPERATURE</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Grain-growth</subject><subject>HARDNESS</subject><subject>Heat treatment</subject><subject>Immiscible systems</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>MELTING POINT</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Nanocrystalline alloys</subject><subject>Nanocrystals</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Thermal analysis</subject><subject>Vickers microhardness</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVoIW7an1DQJdDLbvS1svZUSmjTQiCX9ixG8mwio5Ucad3i_PrI2PSakxjN884wDyGfOes54_pm228hRp_nXjAueyZ7vl5fkBU3a9kprcd3ZMVGMXRGGnNJPtS6ZYzxUfIVgbsCIdEaXpDWBVyI4QWWkBPNE02Qsi-H9h9jSEh93u2wUFjoU3h8ogvOrYRlX7BSd6CNyoeQHum_sLQupJbbzx_J-wlixU_n94r8-fH99-3P7v7h7tftt_vOKzYsneZ-MgjSODZorsFNWpjRCD3CiMg8biZnFA4b4MY4h2IzgRONB-dBCSGvyJfT3F3Jz3usi51D9RgjJMz7avnApZJaK_M2qrQaRsUH1dDhhPqSay042V0JM5SD5cwe7dutPdu3R_uWSdvst9z1eQVUD3EqkHyo_8NirUZuxuP8rycOm5q_AYutPmBq54aCfrGbHN7Y9Aoh9KAn</recordid><startdate>20131005</startdate><enddate>20131005</enddate><creator>Darling, K.A.</creator><creator>Roberts, A.J.</creator><creator>Mishin, Y.</creator><creator>Mathaudhu, S.N.</creator><creator>Kecskes, L.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20131005</creationdate><title>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</title><author>Darling, K.A. ; Roberts, A.J. ; Mishin, Y. ; Mathaudhu, S.N. ; Kecskes, L.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-61cf8ea38b05616abf62898269a9ee0cedfb84e5da188bbe2dfab2a38abca4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Annealing</topic><topic>ANNEALING PROCESSES</topic><topic>Applied sciences</topic><topic>Binary alloys</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>CRYSTAL STRUCTURE</topic><topic>DIFFUSION</topic><topic>ELEVATED TEMPERATURE</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Grain-growth</topic><topic>HARDNESS</topic><topic>Heat treatment</topic><topic>Immiscible systems</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>MELTING POINT</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Nanocrystalline alloys</topic><topic>Nanocrystals</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Thermal analysis</topic><topic>Vickers microhardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darling, K.A.</creatorcontrib><creatorcontrib>Roberts, A.J.</creatorcontrib><creatorcontrib>Mishin, Y.</creatorcontrib><creatorcontrib>Mathaudhu, S.N.</creatorcontrib><creatorcontrib>Kecskes, L.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darling, K.A.</au><au>Roberts, A.J.</au><au>Mishin, Y.</au><au>Mathaudhu, S.N.</au><au>Kecskes, L.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2013-10-05</date><risdate>2013</risdate><volume>573</volume><spage>142</spage><epage>150</epage><pages>142-150</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•A mean grain size of 167nm is retained after annealing at 97% of the melting point.•Hardness surpasses conventional pure nanocrystalline Cu by 2.5GPa.•Extreme stability is attributed to both thermodynamic and kinetic stabilization.
Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553kJ/mol. Interestingly, nanocrystalline Cu–10at.%Ta maintains a mean grain size (GS) of 167nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10at.%Ta exhibits Vickers microhardness values near 5GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5GPa.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2013.03.177</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2013-10, Vol.573, p.142-150 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513436648 |
source | Elsevier ScienceDirect Journals |
subjects | Alloying Alloys Annealing ANNEALING PROCESSES Applied sciences Binary alloys Condensed matter: structure, mechanical and thermal properties Copper COPPER ALLOYS (40 TO 99.3 CU) Copper base alloys CRYSTAL STRUCTURE DIFFUSION ELEVATED TEMPERATURE Equations of state, phase equilibria, and phase transitions Exact sciences and technology Grain-growth HARDNESS Heat treatment Immiscible systems Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology MELTING POINT Metals. Metallurgy Microstructure MICROSTRUCTURES Nanocrystalline alloys Nanocrystals Physics Production techniques Solubility, segregation, and mixing phase separation Stability Stabilization Structure of solids and liquids crystallography Structure of specific crystalline solids Thermal analysis Vickers microhardness |
title | Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20size%20stabilization%20of%20nanocrystalline%20copper%20at%20high%20temperatures%20by%20alloying%20with%20tantalum&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Darling,%20K.A.&rft.date=2013-10-05&rft.volume=573&rft.spage=142&rft.epage=150&rft.pages=142-150&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2013.03.177&rft_dat=%3Cproquest_cross%3E1464594154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464594154&rft_id=info:pmid/&rft_els_id=S0925838813007081&rfr_iscdi=true |