Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing

► A fundamental concept of information granularity is introduced. ► Information granularity is regarded as a design asset in system design. ► Discussed is a problem of optimal allocation of information granularity. ► Various allocation protocols are studied. ► Main categories of granular models are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2014-01, Vol.232 (1), p.137-145
1. Verfasser: Pedrycz, Witold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 1
container_start_page 137
container_title European journal of operational research
container_volume 232
creator Pedrycz, Witold
description ► A fundamental concept of information granularity is introduced. ► Information granularity is regarded as a design asset in system design. ► Discussed is a problem of optimal allocation of information granularity. ► Various allocation protocols are studied. ► Main categories of granular models are given. The highly diversified conceptual and algorithmic landscape of Granular Computing calls for the formation of sound fundamentals of the discipline, which cut across the diversity of formal frameworks (fuzzy sets, sets, rough sets) in which information granules are formed and processed. The study addresses this quest by introducing an idea of granular models – generalizations of numeric models that are formed as a result of an optimal allocation (distribution) of information granularity. Information granularity is regarded as a crucial design asset, which helps establish a better rapport of the resulting granular model with the system under modeling. A suite of modeling situations is elaborated on; they offer convincing examples behind the emergence of granular models. Pertinent problems showing how information granularity is distributed throughout the parameters of numeric functions (and resulting in granular mappings) are formulated as optimization tasks. A set of associated information granularity distribution protocols is discussed. We also provide a number of illustrative examples.
doi_str_mv 10.1016/j.ejor.2012.03.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513427787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221712002482</els_id><sourcerecordid>3049502481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-60db23533d9c56aaeb3bdd8ae4cf15a1dc631954d20a88a946c1f2cf60b80bdb3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AU8BL1665qNNs-JFFl0Fwct6DmmSrqltsiatsv4Cf7ap9eRBGBgm87yTYV4AzjCaY4TZZTM3jQ9zgjCZI5qC74EZ5iXJGGdoH8wQLcuMEFwegqMYG4QQLnAxA183beuV7K130NfQutqHbio3QbqhlcH2u_QO_ba3nf2cetJpqI2yMRVZJ1-t28DOa9PGK7j2HzLoCKvBtnps9C8G1n5w-kcbx39Wv7Ph0nfboU_UCTioZRvN6W8-Bs93t-vlffb4tHpY3jxmKi94nzGkK0ILSvVCFUxKU9FKay5NrmpcSKwVo3hR5Jogyblc5EzhmqiaoYqjSlf0GFxMc7fBvw0m9qKzUZm2lc74IYp0FpqTsuRlQs__oI0fgkvbCZwTRvOClCxRZKJU8DEGU4ttsJ0MO4GRGM0RjRjNEaM5AtEUPImuJ1G6mHm3JoiorHHKaBuM6oX29j_5NwgXm9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426345276</pqid></control><display><type>article</type><title>Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing</title><source>Elsevier ScienceDirect Journals</source><creator>Pedrycz, Witold</creator><creatorcontrib>Pedrycz, Witold</creatorcontrib><description>► A fundamental concept of information granularity is introduced. ► Information granularity is regarded as a design asset in system design. ► Discussed is a problem of optimal allocation of information granularity. ► Various allocation protocols are studied. ► Main categories of granular models are given. The highly diversified conceptual and algorithmic landscape of Granular Computing calls for the formation of sound fundamentals of the discipline, which cut across the diversity of formal frameworks (fuzzy sets, sets, rough sets) in which information granules are formed and processed. The study addresses this quest by introducing an idea of granular models – generalizations of numeric models that are formed as a result of an optimal allocation (distribution) of information granularity. Information granularity is regarded as a crucial design asset, which helps establish a better rapport of the resulting granular model with the system under modeling. A suite of modeling situations is elaborated on; they offer convincing examples behind the emergence of granular models. Pertinent problems showing how information granularity is distributed throughout the parameters of numeric functions (and resulting in granular mappings) are formulated as optimization tasks. A set of associated information granularity distribution protocols is discussed. We also provide a number of illustrative examples.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2012.03.038</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Allocation of information granularity ; Allocations ; Computation ; Decision making models ; Emergence ; Fuzzy sets ; Granular Computing ; Granular materials ; Information science ; Mathematical functions ; Mathematical models ; Mathematical problems ; Numerical analysis ; Operational research ; Optimization ; Optimization algorithms ; Studies</subject><ispartof>European journal of operational research, 2014-01, Vol.232 (1), p.137-145</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-60db23533d9c56aaeb3bdd8ae4cf15a1dc631954d20a88a946c1f2cf60b80bdb3</citedby><cites>FETCH-LOGICAL-c458t-60db23533d9c56aaeb3bdd8ae4cf15a1dc631954d20a88a946c1f2cf60b80bdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2012.03.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Pedrycz, Witold</creatorcontrib><title>Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing</title><title>European journal of operational research</title><description>► A fundamental concept of information granularity is introduced. ► Information granularity is regarded as a design asset in system design. ► Discussed is a problem of optimal allocation of information granularity. ► Various allocation protocols are studied. ► Main categories of granular models are given. The highly diversified conceptual and algorithmic landscape of Granular Computing calls for the formation of sound fundamentals of the discipline, which cut across the diversity of formal frameworks (fuzzy sets, sets, rough sets) in which information granules are formed and processed. The study addresses this quest by introducing an idea of granular models – generalizations of numeric models that are formed as a result of an optimal allocation (distribution) of information granularity. Information granularity is regarded as a crucial design asset, which helps establish a better rapport of the resulting granular model with the system under modeling. A suite of modeling situations is elaborated on; they offer convincing examples behind the emergence of granular models. Pertinent problems showing how information granularity is distributed throughout the parameters of numeric functions (and resulting in granular mappings) are formulated as optimization tasks. A set of associated information granularity distribution protocols is discussed. We also provide a number of illustrative examples.</description><subject>Algorithms</subject><subject>Allocation of information granularity</subject><subject>Allocations</subject><subject>Computation</subject><subject>Decision making models</subject><subject>Emergence</subject><subject>Fuzzy sets</subject><subject>Granular Computing</subject><subject>Granular materials</subject><subject>Information science</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Numerical analysis</subject><subject>Operational research</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQhoMouH78AU8BL1665qNNs-JFFl0Fwct6DmmSrqltsiatsv4Cf7ap9eRBGBgm87yTYV4AzjCaY4TZZTM3jQ9zgjCZI5qC74EZ5iXJGGdoH8wQLcuMEFwegqMYG4QQLnAxA183beuV7K130NfQutqHbio3QbqhlcH2u_QO_ba3nf2cetJpqI2yMRVZJ1-t28DOa9PGK7j2HzLoCKvBtnps9C8G1n5w-kcbx39Wv7Ph0nfboU_UCTioZRvN6W8-Bs93t-vlffb4tHpY3jxmKi94nzGkK0ILSvVCFUxKU9FKay5NrmpcSKwVo3hR5Jogyblc5EzhmqiaoYqjSlf0GFxMc7fBvw0m9qKzUZm2lc74IYp0FpqTsuRlQs__oI0fgkvbCZwTRvOClCxRZKJU8DEGU4ttsJ0MO4GRGM0RjRjNEaM5AtEUPImuJ1G6mHm3JoiorHHKaBuM6oX29j_5NwgXm9k</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Pedrycz, Witold</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing</title><author>Pedrycz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-60db23533d9c56aaeb3bdd8ae4cf15a1dc631954d20a88a946c1f2cf60b80bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Allocation of information granularity</topic><topic>Allocations</topic><topic>Computation</topic><topic>Decision making models</topic><topic>Emergence</topic><topic>Fuzzy sets</topic><topic>Granular Computing</topic><topic>Granular materials</topic><topic>Information science</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Numerical analysis</topic><topic>Operational research</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrycz, Witold</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrycz, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing</atitle><jtitle>European journal of operational research</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>232</volume><issue>1</issue><spage>137</spage><epage>145</epage><pages>137-145</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>► A fundamental concept of information granularity is introduced. ► Information granularity is regarded as a design asset in system design. ► Discussed is a problem of optimal allocation of information granularity. ► Various allocation protocols are studied. ► Main categories of granular models are given. The highly diversified conceptual and algorithmic landscape of Granular Computing calls for the formation of sound fundamentals of the discipline, which cut across the diversity of formal frameworks (fuzzy sets, sets, rough sets) in which information granules are formed and processed. The study addresses this quest by introducing an idea of granular models – generalizations of numeric models that are formed as a result of an optimal allocation (distribution) of information granularity. Information granularity is regarded as a crucial design asset, which helps establish a better rapport of the resulting granular model with the system under modeling. A suite of modeling situations is elaborated on; they offer convincing examples behind the emergence of granular models. Pertinent problems showing how information granularity is distributed throughout the parameters of numeric functions (and resulting in granular mappings) are formulated as optimization tasks. A set of associated information granularity distribution protocols is discussed. We also provide a number of illustrative examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2012.03.038</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2014-01, Vol.232 (1), p.137-145
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_1513427787
source Elsevier ScienceDirect Journals
subjects Algorithms
Allocation of information granularity
Allocations
Computation
Decision making models
Emergence
Fuzzy sets
Granular Computing
Granular materials
Information science
Mathematical functions
Mathematical models
Mathematical problems
Numerical analysis
Operational research
Optimization
Optimization algorithms
Studies
title Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allocation%20of%20information%20granularity%20in%20optimization%20and%20decision-making%20models:%20Towards%20building%20the%20foundations%20of%20Granular%20Computing&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Pedrycz,%20Witold&rft.date=2014-01-01&rft.volume=232&rft.issue=1&rft.spage=137&rft.epage=145&rft.pages=137-145&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2012.03.038&rft_dat=%3Cproquest_cross%3E3049502481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426345276&rft_id=info:pmid/&rft_els_id=S0377221712002482&rfr_iscdi=true