Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation

•In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity.•The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity.•For pnictides the antiferromagnetism exists as a result of the nesting condition.•Since...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. C, Superconductivity Superconductivity, 2013-10, Vol.493, p.7-11
Hauptverfasser: Fan, J.D., Malozovsky, Y.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 7
container_title Physica. C, Superconductivity
container_volume 493
creator Fan, J.D.
Malozovsky, Y.M.
description •In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity.•The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity.•For pnictides the antiferromagnetism exists as a result of the nesting condition.•Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. We consider the Hubbard model in terms of the perturbative diagrammatic approach (UNF⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UNF≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UNF
doi_str_mv 10.1016/j.physc.2013.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513423406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921453413001147</els_id><sourcerecordid>1464574663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-d25aed6bd3ce12df3595ff173adde9441000c1898b55344c0766c35a878253b3</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhlGVSt2kfYJefKmUizdgwNiVcohWSVMpUg_NHbHDuGFlgwt4pX37sLtRji0aNHP4foaZn5CvjK4ZZe3Nbj2_HBKsG8r4mpag6gNZsU7xumGCX5AV7RtWC8nFJ3KZ0o6Ww3q2IuH3MmOE4O0C2e1dPlTG23KzGzDGMJk_HrNLU-V8BcscTcZ0QmbvisJi-l7d70v2gFUYqvyCVQzjqd6EZQzTtoIQI44mu-A_k4-DGRN-ectX5Pnh_nnzWD_9-vFzc_dUA-9Frm0jDdp2azkga-zAZS-HgSlurMVeCFb-D6zru60sMwmgqm2BS9OprpF8y6_I9fnZOYa_C6asJ5cAx9F4DEvSTDIuGi5o-39UtEIq0ba8oPyMQgwpRRz0HN1k4kEzqo9G6J0-GaGPRmhagqqi-vbWwCQw4xCNB5fepY3qlCzOFO72zGHZy95h1Ancca3WRYSsbXD_7PMKaUygxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464574663</pqid></control><display><type>article</type><title>Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fan, J.D. ; Malozovsky, Y.M.</creator><creatorcontrib>Fan, J.D. ; Malozovsky, Y.M.</creatorcontrib><description>•In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity.•The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity.•For pnictides the antiferromagnetism exists as a result of the nesting condition.•Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. We consider the Hubbard model in terms of the perturbative diagrammatic approach (UNF⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U&gt;0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UNF≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UNF&lt;1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one and entitled “Superconductivity from a Fermi Liquid: The Role of Electron-Phonon Interaction”, and the superconductivity in the nearly antiferromagnetic Fermi liquid exists as a result of the repulsive interaction.</description><identifier>ISSN: 0921-4534</identifier><identifier>EISSN: 1873-2143</identifier><identifier>DOI: 10.1016/j.physc.2013.03.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antiferromagnetism ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; COPPER OXIDE ; Correlation ; Cuprates ; Doping ; ELECTRICAL CONDUCTIVITY ; Electronic structure ; Exact sciences and technology ; Fermi liquid ; Fermi liquid interaction function ; Landau Fermi liquid ; MAGNETIC PROPERTIES ; MATHEMATICAL ANALYSIS ; Mathematical models ; Nesting ; Physics ; Pnictides ; Properties of type I and type II superconductors ; Quasiparticles ; Singularities ; SUPERCONDUCTIVITY</subject><ispartof>Physica. C, Superconductivity, 2013-10, Vol.493, p.7-11</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-d25aed6bd3ce12df3595ff173adde9441000c1898b55344c0766c35a878253b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physc.2013.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27875453$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, J.D.</creatorcontrib><creatorcontrib>Malozovsky, Y.M.</creatorcontrib><title>Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation</title><title>Physica. C, Superconductivity</title><description>•In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity.•The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity.•For pnictides the antiferromagnetism exists as a result of the nesting condition.•Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. We consider the Hubbard model in terms of the perturbative diagrammatic approach (UNF⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U&gt;0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UNF≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UNF&lt;1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one and entitled “Superconductivity from a Fermi Liquid: The Role of Electron-Phonon Interaction”, and the superconductivity in the nearly antiferromagnetic Fermi liquid exists as a result of the repulsive interaction.</description><subject>Antiferromagnetism</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>COPPER OXIDE</subject><subject>Correlation</subject><subject>Cuprates</subject><subject>Doping</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electronic structure</subject><subject>Exact sciences and technology</subject><subject>Fermi liquid</subject><subject>Fermi liquid interaction function</subject><subject>Landau Fermi liquid</subject><subject>MAGNETIC PROPERTIES</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mathematical models</subject><subject>Nesting</subject><subject>Physics</subject><subject>Pnictides</subject><subject>Properties of type I and type II superconductors</subject><subject>Quasiparticles</subject><subject>Singularities</subject><subject>SUPERCONDUCTIVITY</subject><issn>0921-4534</issn><issn>1873-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAQhlGVSt2kfYJefKmUizdgwNiVcohWSVMpUg_NHbHDuGFlgwt4pX37sLtRji0aNHP4foaZn5CvjK4ZZe3Nbj2_HBKsG8r4mpag6gNZsU7xumGCX5AV7RtWC8nFJ3KZ0o6Ww3q2IuH3MmOE4O0C2e1dPlTG23KzGzDGMJk_HrNLU-V8BcscTcZ0QmbvisJi-l7d70v2gFUYqvyCVQzjqd6EZQzTtoIQI44mu-A_k4-DGRN-ectX5Pnh_nnzWD_9-vFzc_dUA-9Frm0jDdp2azkga-zAZS-HgSlurMVeCFb-D6zru60sMwmgqm2BS9OprpF8y6_I9fnZOYa_C6asJ5cAx9F4DEvSTDIuGi5o-39UtEIq0ba8oPyMQgwpRRz0HN1k4kEzqo9G6J0-GaGPRmhagqqi-vbWwCQw4xCNB5fepY3qlCzOFO72zGHZy95h1Ancca3WRYSsbXD_7PMKaUygxQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Fan, J.D.</creator><creator>Malozovsky, Y.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation</title><author>Fan, J.D. ; Malozovsky, Y.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-d25aed6bd3ce12df3595ff173adde9441000c1898b55344c0766c35a878253b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antiferromagnetism</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>COPPER OXIDE</topic><topic>Correlation</topic><topic>Cuprates</topic><topic>Doping</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electronic structure</topic><topic>Exact sciences and technology</topic><topic>Fermi liquid</topic><topic>Fermi liquid interaction function</topic><topic>Landau Fermi liquid</topic><topic>MAGNETIC PROPERTIES</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mathematical models</topic><topic>Nesting</topic><topic>Physics</topic><topic>Pnictides</topic><topic>Properties of type I and type II superconductors</topic><topic>Quasiparticles</topic><topic>Singularities</topic><topic>SUPERCONDUCTIVITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, J.D.</creatorcontrib><creatorcontrib>Malozovsky, Y.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. C, Superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, J.D.</au><au>Malozovsky, Y.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation</atitle><jtitle>Physica. C, Superconductivity</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>493</volume><spage>7</spage><epage>11</epage><pages>7-11</pages><issn>0921-4534</issn><eissn>1873-2143</eissn><abstract>•In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity.•The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity.•For pnictides the antiferromagnetism exists as a result of the nesting condition.•Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. We consider the Hubbard model in terms of the perturbative diagrammatic approach (UNF⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U&gt;0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UNF≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UNF&lt;1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one and entitled “Superconductivity from a Fermi Liquid: The Role of Electron-Phonon Interaction”, and the superconductivity in the nearly antiferromagnetic Fermi liquid exists as a result of the repulsive interaction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physc.2013.03.007</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-4534
ispartof Physica. C, Superconductivity, 2013-10, Vol.493, p.7-11
issn 0921-4534
1873-2143
language eng
recordid cdi_proquest_miscellaneous_1513423406
source Access via ScienceDirect (Elsevier)
subjects Antiferromagnetism
Condensed matter: electronic structure, electrical, magnetic, and optical properties
COPPER OXIDE
Correlation
Cuprates
Doping
ELECTRICAL CONDUCTIVITY
Electronic structure
Exact sciences and technology
Fermi liquid
Fermi liquid interaction function
Landau Fermi liquid
MAGNETIC PROPERTIES
MATHEMATICAL ANALYSIS
Mathematical models
Nesting
Physics
Pnictides
Properties of type I and type II superconductors
Quasiparticles
Singularities
SUPERCONDUCTIVITY
title Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductivity%20and%20antiferromagnetism%20in%20cuprates%20and%20pnictides:%20Evidence%20of%20the%20role%20of%20Coulomb%20correlation&rft.jtitle=Physica.%20C,%20Superconductivity&rft.au=Fan,%20J.D.&rft.date=2013-10-01&rft.volume=493&rft.spage=7&rft.epage=11&rft.pages=7-11&rft.issn=0921-4534&rft.eissn=1873-2143&rft_id=info:doi/10.1016/j.physc.2013.03.007&rft_dat=%3Cproquest_cross%3E1464574663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464574663&rft_id=info:pmid/&rft_els_id=S0921453413001147&rfr_iscdi=true