Quantum optical realization of classical linear stochastic systems

The purpose of this paper is to show how a class of classical linear stochastic systems can be physically implemented using quantum optical components. Quantum optical systems typically have much higher bandwidth than electronic devices, meaning faster response and processing times, and hence have t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2013-10, Vol.49 (10), p.3090-3096
Hauptverfasser: Wang, Shi, Nurdin, Hendra I., Zhang, Guofeng, James, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3096
container_issue 10
container_start_page 3090
container_title Automatica (Oxford)
container_volume 49
creator Wang, Shi
Nurdin, Hendra I.
Zhang, Guofeng
James, Matthew R.
description The purpose of this paper is to show how a class of classical linear stochastic systems can be physically implemented using quantum optical components. Quantum optical systems typically have much higher bandwidth than electronic devices, meaning faster response and processing times, and hence have the potential for providing better performance than classical systems. A procedure is provided for constructing the quantum optical realization. The paper also describes the use of the quantum optical realization in a measurement feedback loop. Some examples are given to illustrate the application of the main results.
doi_str_mv 10.1016/j.automatica.2013.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513417056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109813003622</els_id><sourcerecordid>1513417056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-7b0615e12061c43d0a60e9663763f8aea24948aa00f8ced81debc2b62eabf3963</originalsourceid><addsrcrecordid>eNqFkMGO1DAMhiMEEsPCO_SCxKXFTjpJ5siuYEFaaYUE58iTcUVGbTPELdLy9GSYFRz3ZNn-_Nv-lWoQOgS0748drUueaEmROg1oOnAdYP9MbdA702pv7HO1AYBti7DzL9UrkWNNe_R6o66_rjQv69Tk01lhbArTmH5XuTw3eWjiSCJ_G2OamUojS44_SCrcyIMsPMlr9WKgUfjNY7xS3z99_Hbzub27v_1y8-Gujb3BpXV7sLhl1DXUygHIAu-sNc6awROT7ne9JwIYfOSDxwPvo95bzbQfzM6aK_Xuonsq-efKsoQpSeRxpJnzKgG3aHp0sD2j_oLGkkUKD-FU0kTlISCEs23hGP7bFs62BXCh2lZH3z5uIalvD4XmmOTfvHYO0DlduesLx_XlX4lLkJh4rpenwnEJh5yeXvYH0P2JEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513417056</pqid></control><display><type>article</type><title>Quantum optical realization of classical linear stochastic systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Shi ; Nurdin, Hendra I. ; Zhang, Guofeng ; James, Matthew R.</creator><creatorcontrib>Wang, Shi ; Nurdin, Hendra I. ; Zhang, Guofeng ; James, Matthew R.</creatorcontrib><description>The purpose of this paper is to show how a class of classical linear stochastic systems can be physically implemented using quantum optical components. Quantum optical systems typically have much higher bandwidth than electronic devices, meaning faster response and processing times, and hence have the potential for providing better performance than classical systems. A procedure is provided for constructing the quantum optical realization. The paper also describes the use of the quantum optical realization in a measurement feedback loop. Some examples are given to illustrate the application of the main results.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2013.07.014</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Automation ; Bandwidth ; Classical and quantum physics: mechanics and fields ; Classical linear stochastic system ; Construction ; Electronic devices ; Exact sciences and technology ; Feedback loops ; Fundamental areas of phenomenology (including applications) ; Mathematics ; Measurement feedback control ; Optical components ; Optical implementations of quantum information processing and transfer ; Optics ; Physics ; Probability and statistics ; Probability theory and stochastic processes ; Quantum computation ; Quantum information ; Quantum optical realization ; Quantum optics ; Sciences and techniques of general use ; Stochastic processes ; Stochastic systems</subject><ispartof>Automatica (Oxford), 2013-10, Vol.49 (10), p.3090-3096</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-7b0615e12061c43d0a60e9663763f8aea24948aa00f8ced81debc2b62eabf3963</citedby><cites>FETCH-LOGICAL-c431t-7b0615e12061c43d0a60e9663763f8aea24948aa00f8ced81debc2b62eabf3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2013.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27701772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shi</creatorcontrib><creatorcontrib>Nurdin, Hendra I.</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>James, Matthew R.</creatorcontrib><title>Quantum optical realization of classical linear stochastic systems</title><title>Automatica (Oxford)</title><description>The purpose of this paper is to show how a class of classical linear stochastic systems can be physically implemented using quantum optical components. Quantum optical systems typically have much higher bandwidth than electronic devices, meaning faster response and processing times, and hence have the potential for providing better performance than classical systems. A procedure is provided for constructing the quantum optical realization. The paper also describes the use of the quantum optical realization in a measurement feedback loop. Some examples are given to illustrate the application of the main results.</description><subject>Automation</subject><subject>Bandwidth</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical linear stochastic system</subject><subject>Construction</subject><subject>Electronic devices</subject><subject>Exact sciences and technology</subject><subject>Feedback loops</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematics</subject><subject>Measurement feedback control</subject><subject>Optical components</subject><subject>Optical implementations of quantum information processing and transfer</subject><subject>Optics</subject><subject>Physics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum optical realization</subject><subject>Quantum optics</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMGO1DAMhiMEEsPCO_SCxKXFTjpJ5siuYEFaaYUE58iTcUVGbTPELdLy9GSYFRz3ZNn-_Nv-lWoQOgS0748drUueaEmROg1oOnAdYP9MbdA702pv7HO1AYBti7DzL9UrkWNNe_R6o66_rjQv69Tk01lhbArTmH5XuTw3eWjiSCJ_G2OamUojS44_SCrcyIMsPMlr9WKgUfjNY7xS3z99_Hbzub27v_1y8-Gujb3BpXV7sLhl1DXUygHIAu-sNc6awROT7ne9JwIYfOSDxwPvo95bzbQfzM6aK_Xuonsq-efKsoQpSeRxpJnzKgG3aHp0sD2j_oLGkkUKD-FU0kTlISCEs23hGP7bFs62BXCh2lZH3z5uIalvD4XmmOTfvHYO0DlduesLx_XlX4lLkJh4rpenwnEJh5yeXvYH0P2JEQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wang, Shi</creator><creator>Nurdin, Hendra I.</creator><creator>Zhang, Guofeng</creator><creator>James, Matthew R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131001</creationdate><title>Quantum optical realization of classical linear stochastic systems</title><author>Wang, Shi ; Nurdin, Hendra I. ; Zhang, Guofeng ; James, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-7b0615e12061c43d0a60e9663763f8aea24948aa00f8ced81debc2b62eabf3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automation</topic><topic>Bandwidth</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical linear stochastic system</topic><topic>Construction</topic><topic>Electronic devices</topic><topic>Exact sciences and technology</topic><topic>Feedback loops</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematics</topic><topic>Measurement feedback control</topic><topic>Optical components</topic><topic>Optical implementations of quantum information processing and transfer</topic><topic>Optics</topic><topic>Physics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum optical realization</topic><topic>Quantum optics</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shi</creatorcontrib><creatorcontrib>Nurdin, Hendra I.</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>James, Matthew R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shi</au><au>Nurdin, Hendra I.</au><au>Zhang, Guofeng</au><au>James, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum optical realization of classical linear stochastic systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>49</volume><issue>10</issue><spage>3090</spage><epage>3096</epage><pages>3090-3096</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>The purpose of this paper is to show how a class of classical linear stochastic systems can be physically implemented using quantum optical components. Quantum optical systems typically have much higher bandwidth than electronic devices, meaning faster response and processing times, and hence have the potential for providing better performance than classical systems. A procedure is provided for constructing the quantum optical realization. The paper also describes the use of the quantum optical realization in a measurement feedback loop. Some examples are given to illustrate the application of the main results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2013.07.014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2013-10, Vol.49 (10), p.3090-3096
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_1513417056
source Elsevier ScienceDirect Journals Complete
subjects Automation
Bandwidth
Classical and quantum physics: mechanics and fields
Classical linear stochastic system
Construction
Electronic devices
Exact sciences and technology
Feedback loops
Fundamental areas of phenomenology (including applications)
Mathematics
Measurement feedback control
Optical components
Optical implementations of quantum information processing and transfer
Optics
Physics
Probability and statistics
Probability theory and stochastic processes
Quantum computation
Quantum information
Quantum optical realization
Quantum optics
Sciences and techniques of general use
Stochastic processes
Stochastic systems
title Quantum optical realization of classical linear stochastic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20optical%20realization%20of%20classical%20linear%20stochastic%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Wang,%20Shi&rft.date=2013-10-01&rft.volume=49&rft.issue=10&rft.spage=3090&rft.epage=3096&rft.pages=3090-3096&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2013.07.014&rft_dat=%3Cproquest_cross%3E1513417056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513417056&rft_id=info:pmid/&rft_els_id=S0005109813003622&rfr_iscdi=true