DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration
[Display omitted] •Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen,...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2014-04, Vol.18 (3), p.449-459 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | 3 |
container_start_page | 449 |
container_title | Medical image analysis |
container_volume | 18 |
creator | Muenzing, Sascha E.A. van Ginneken, Bram Viergever, Max A. Pluim, Josien P.W. |
description | [Display omitted]
•Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10).
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed. |
doi_str_mv | 10.1016/j.media.2013.12.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513051309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841513001771</els_id><sourcerecordid>1513051309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</originalsourceid><addsrcrecordid>eNp9kM1q3DAQx0VpaLZJnyBQdOzF7ujDll3IYbNpm4WFQNiehT9GGy22tZHsQG55h75hn6TabBLIJYdhZpj_f4b5EXLGIGXA8u_btMfWVikHJlLGU4D8A5kxkbOkkFx8fK1Zdkw-h7AFACUlfCLHXGZZDqqckelyeXPhXBj_Pf6dD7TqNs7b8banxnla7wd22NAWY9tXdYfU9tUGqceNDaOvRuuGH3S-23W2eWro6Gg3RctiTe0QFUmY6i024xvLKTkyVRfwy3M-IX9-_VwvrpLV9e_lYr5KGqlgTJjEtmxrw7HgqpGiAAFtWwolpMhBGsWU4HXG8syURasMFEbxgpd1yTODyMUJ-XbYu_PubsIw6t6GBruuGtBNQbOMCdhHGaXiIG28C8Gj0Tsff_UPmoHe89Zb_cRb73lrxnXkHV1fnw9MdZy-el4AR8H5QYDxzXuLXofG4tDETT5S0a2z7x74D8bhk8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513051309</pqid></control><display><type>article</type><title>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Muenzing, Sascha E.A. ; van Ginneken, Bram ; Viergever, Max A. ; Pluim, Josien P.W.</creator><creatorcontrib>Muenzing, Sascha E.A. ; van Ginneken, Bram ; Viergever, Max A. ; Pluim, Josien P.W.</creatorcontrib><description>[Display omitted]
•Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10).
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2013.12.006</identifier><identifier>PMID: 24556079</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Boosting ; Deformable image registration ; Female ; Humans ; Lung - diagnostic imaging ; Lung Diseases - diagnostic imaging ; Machine learning ; Male ; Pattern recognition ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique ; Tomography, X-Ray Computed - methods</subject><ispartof>Medical image analysis, 2014-04, Vol.18 (3), p.449-459</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</citedby><cites>FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841513001771$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24556079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muenzing, Sascha E.A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><creatorcontrib>Pluim, Josien P.W.</creatorcontrib><title>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted]
•Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10).
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Boosting</subject><subject>Deformable image registration</subject><subject>Female</subject><subject>Humans</subject><subject>Lung - diagnostic imaging</subject><subject>Lung Diseases - diagnostic imaging</subject><subject>Machine learning</subject><subject>Male</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1q3DAQx0VpaLZJnyBQdOzF7ujDll3IYbNpm4WFQNiehT9GGy22tZHsQG55h75hn6TabBLIJYdhZpj_f4b5EXLGIGXA8u_btMfWVikHJlLGU4D8A5kxkbOkkFx8fK1Zdkw-h7AFACUlfCLHXGZZDqqckelyeXPhXBj_Pf6dD7TqNs7b8banxnla7wd22NAWY9tXdYfU9tUGqceNDaOvRuuGH3S-23W2eWro6Gg3RctiTe0QFUmY6i024xvLKTkyVRfwy3M-IX9-_VwvrpLV9e_lYr5KGqlgTJjEtmxrw7HgqpGiAAFtWwolpMhBGsWU4HXG8syURasMFEbxgpd1yTODyMUJ-XbYu_PubsIw6t6GBruuGtBNQbOMCdhHGaXiIG28C8Gj0Tsff_UPmoHe89Zb_cRb73lrxnXkHV1fnw9MdZy-el4AR8H5QYDxzXuLXofG4tDETT5S0a2z7x74D8bhk8w</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Muenzing, Sascha E.A.</creator><creator>van Ginneken, Bram</creator><creator>Viergever, Max A.</creator><creator>Pluim, Josien P.W.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</title><author>Muenzing, Sascha E.A. ; van Ginneken, Bram ; Viergever, Max A. ; Pluim, Josien P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Boosting</topic><topic>Deformable image registration</topic><topic>Female</topic><topic>Humans</topic><topic>Lung - diagnostic imaging</topic><topic>Lung Diseases - diagnostic imaging</topic><topic>Machine learning</topic><topic>Male</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muenzing, Sascha E.A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><creatorcontrib>Pluim, Josien P.W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muenzing, Sascha E.A.</au><au>van Ginneken, Bram</au><au>Viergever, Max A.</au><au>Pluim, Josien P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2014-04</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><spage>449</spage><epage>459</epage><pages>449-459</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted]
•Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10).
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24556079</pmid><doi>10.1016/j.media.2013.12.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2014-04, Vol.18 (3), p.449-459 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513051309 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Artificial Intelligence Boosting Deformable image registration Female Humans Lung - diagnostic imaging Lung Diseases - diagnostic imaging Machine learning Male Pattern recognition Pattern Recognition, Automated - methods Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Sensitivity and Specificity Subtraction Technique Tomography, X-Ray Computed - methods |
title | DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRBoost%E2%80%93An%20algorithm%20for%20boosting%20deformable%20image%20registration:%20Application%20to%20lung%20CT%20intra-subject%20registration&rft.jtitle=Medical%20image%20analysis&rft.au=Muenzing,%20Sascha%20E.A.&rft.date=2014-04&rft.volume=18&rft.issue=3&rft.spage=449&rft.epage=459&rft.pages=449-459&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2013.12.006&rft_dat=%3Cproquest_cross%3E1513051309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513051309&rft_id=info:pmid/24556079&rft_els_id=S1361841513001771&rfr_iscdi=true |