DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration

[Display omitted] •Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2014-04, Vol.18 (3), p.449-459
Hauptverfasser: Muenzing, Sascha E.A., van Ginneken, Bram, Viergever, Max A., Pluim, Josien P.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 3
container_start_page 449
container_title Medical image analysis
container_volume 18
creator Muenzing, Sascha E.A.
van Ginneken, Bram
Viergever, Max A.
Pluim, Josien P.W.
description [Display omitted] •Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10). We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.
doi_str_mv 10.1016/j.media.2013.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513051309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841513001771</els_id><sourcerecordid>1513051309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</originalsourceid><addsrcrecordid>eNp9kM1q3DAQx0VpaLZJnyBQdOzF7ujDll3IYbNpm4WFQNiehT9GGy22tZHsQG55h75hn6TabBLIJYdhZpj_f4b5EXLGIGXA8u_btMfWVikHJlLGU4D8A5kxkbOkkFx8fK1Zdkw-h7AFACUlfCLHXGZZDqqckelyeXPhXBj_Pf6dD7TqNs7b8banxnla7wd22NAWY9tXdYfU9tUGqceNDaOvRuuGH3S-23W2eWro6Gg3RctiTe0QFUmY6i024xvLKTkyVRfwy3M-IX9-_VwvrpLV9e_lYr5KGqlgTJjEtmxrw7HgqpGiAAFtWwolpMhBGsWU4HXG8syURasMFEbxgpd1yTODyMUJ-XbYu_PubsIw6t6GBruuGtBNQbOMCdhHGaXiIG28C8Gj0Tsff_UPmoHe89Zb_cRb73lrxnXkHV1fnw9MdZy-el4AR8H5QYDxzXuLXofG4tDETT5S0a2z7x74D8bhk8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513051309</pqid></control><display><type>article</type><title>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Muenzing, Sascha E.A. ; van Ginneken, Bram ; Viergever, Max A. ; Pluim, Josien P.W.</creator><creatorcontrib>Muenzing, Sascha E.A. ; van Ginneken, Bram ; Viergever, Max A. ; Pluim, Josien P.W.</creatorcontrib><description>[Display omitted] •Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10). We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2013.12.006</identifier><identifier>PMID: 24556079</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Boosting ; Deformable image registration ; Female ; Humans ; Lung - diagnostic imaging ; Lung Diseases - diagnostic imaging ; Machine learning ; Male ; Pattern recognition ; Pattern Recognition, Automated - methods ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Subtraction Technique ; Tomography, X-Ray Computed - methods</subject><ispartof>Medical image analysis, 2014-04, Vol.18 (3), p.449-459</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</citedby><cites>FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841513001771$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24556079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muenzing, Sascha E.A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><creatorcontrib>Pluim, Josien P.W.</creatorcontrib><title>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted] •Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10). We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Boosting</subject><subject>Deformable image registration</subject><subject>Female</subject><subject>Humans</subject><subject>Lung - diagnostic imaging</subject><subject>Lung Diseases - diagnostic imaging</subject><subject>Machine learning</subject><subject>Male</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1q3DAQx0VpaLZJnyBQdOzF7ujDll3IYbNpm4WFQNiehT9GGy22tZHsQG55h75hn6TabBLIJYdhZpj_f4b5EXLGIGXA8u_btMfWVikHJlLGU4D8A5kxkbOkkFx8fK1Zdkw-h7AFACUlfCLHXGZZDqqckelyeXPhXBj_Pf6dD7TqNs7b8banxnla7wd22NAWY9tXdYfU9tUGqceNDaOvRuuGH3S-23W2eWro6Gg3RctiTe0QFUmY6i024xvLKTkyVRfwy3M-IX9-_VwvrpLV9e_lYr5KGqlgTJjEtmxrw7HgqpGiAAFtWwolpMhBGsWU4HXG8syURasMFEbxgpd1yTODyMUJ-XbYu_PubsIw6t6GBruuGtBNQbOMCdhHGaXiIG28C8Gj0Tsff_UPmoHe89Zb_cRb73lrxnXkHV1fnw9MdZy-el4AR8H5QYDxzXuLXofG4tDETT5S0a2z7x74D8bhk8w</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Muenzing, Sascha E.A.</creator><creator>van Ginneken, Bram</creator><creator>Viergever, Max A.</creator><creator>Pluim, Josien P.W.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</title><author>Muenzing, Sascha E.A. ; van Ginneken, Bram ; Viergever, Max A. ; Pluim, Josien P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-14ed9dbf2e827c438030dd937343604f71732b5165f98d7f08f72829b925fee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Boosting</topic><topic>Deformable image registration</topic><topic>Female</topic><topic>Humans</topic><topic>Lung - diagnostic imaging</topic><topic>Lung Diseases - diagnostic imaging</topic><topic>Machine learning</topic><topic>Male</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muenzing, Sascha E.A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><creatorcontrib>Pluim, Josien P.W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muenzing, Sascha E.A.</au><au>van Ginneken, Bram</au><au>Viergever, Max A.</au><au>Pluim, Josien P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2014-04</date><risdate>2014</risdate><volume>18</volume><issue>3</issue><spage>449</spage><epage>459</epage><pages>449-459</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted] •Novel boosting algorithm for deformable image registration.•Adaptive registration scheme (adaptive boosting).•Validated on three different DIR methods (ANTS gSyn, NiftyReg, and DROP).•Evaluated on three independent reference datasets of pulmonary image scan pairs (NELSON, COPDgen, EMPIRE10). We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5–34% depending on the dataset and the registration algorithm employed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24556079</pmid><doi>10.1016/j.media.2013.12.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2014-04, Vol.18 (3), p.449-459
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_1513051309
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Artificial Intelligence
Boosting
Deformable image registration
Female
Humans
Lung - diagnostic imaging
Lung Diseases - diagnostic imaging
Machine learning
Male
Pattern recognition
Pattern Recognition, Automated - methods
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
Tomography, X-Ray Computed - methods
title DIRBoost–An algorithm for boosting deformable image registration: Application to lung CT intra-subject registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRBoost%E2%80%93An%20algorithm%20for%20boosting%20deformable%20image%20registration:%20Application%20to%20lung%20CT%20intra-subject%20registration&rft.jtitle=Medical%20image%20analysis&rft.au=Muenzing,%20Sascha%20E.A.&rft.date=2014-04&rft.volume=18&rft.issue=3&rft.spage=449&rft.epage=459&rft.pages=449-459&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2013.12.006&rft_dat=%3Cproquest_cross%3E1513051309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513051309&rft_id=info:pmid/24556079&rft_els_id=S1361841513001771&rfr_iscdi=true