Proton Conductivity in Doped Aluminum Phosphonate Sponges
Proton‐conducting networks (NETs) were prepared successfully by the insertion of phosphonated nanochannels into organic–inorganic hybrid materials that contain Al3+ as the connector and hexakis(p‐phosphonatophenyl)benzene (HPB) as the linker. Noncomplexed phosphonic acid groups remain in the framewo...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2014-04, Vol.7 (4), p.1148-1154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proton‐conducting networks (NETs) were prepared successfully by the insertion of phosphonated nanochannels into organic–inorganic hybrid materials that contain Al3+ as the connector and hexakis(p‐phosphonatophenyl)benzene (HPB) as the linker. Noncomplexed phosphonic acid groups remain in the framework, which depends on the ratio of both compounds, to yield a proton conductivity in the region of 10−3 S cm−1. This conductivity can be further improved and values as high as Nafion, a benchmark proton‐exchange membrane for fuel cell applications, can be obtained by filling the network pores with intrinsic proton conductors. As a result of their sponge‐like morphology, aluminum phosphonates adsorb conductive small molecules such as phosphonic acids, which results in a very high proton conductivity of approximately 5×10−2 S cm−1 at 120 °C and 50 % relative humidity (RH). Contrary to Nafion, the doped networks show a remarkably low temperature dependence of proton conductivity from external humidification. This effect indicates a transport mechanism that is different to the water vehicle mechanism. Furthermore, the materials exhibit an activation energy of 40 kJ mol−1 at 15 % RH that starts to diminish to 10 kJ mol−1 at 80 % RH, which is even smaller than the corresponding values obtained for Nafion 117.
Surf the NET: Acid‐doped inorganic–organic hybrid materials based on aluminum phosphonates have been synthesized and can compete with the conductivity performance of commonly used benchmark polymers as a proton‐exchange membrane for fuel cell applications. As a result of their sponge‐like morphology, they can adsorb intrinsic proton conductors such as phosphonic acids. |
---|---|
ISSN: | 1864-5631 1864-564X |
DOI: | 10.1002/cssc.201301055 |