Inferring gene correlation networks from transcription factor binding sites
Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This pape...
Gespeichert in:
Veröffentlicht in: | Genes & Genetic Systems 2013/10/01, Vol.88(5), pp.301-309 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | 5 |
container_start_page | 301 |
container_title | Genes & Genetic Systems |
container_volume | 88 |
creator | Mahdevar, Ghasem Nowzari-Dalini, Abbas Sadeghi, Mehdi |
description | Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter’s sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author. |
doi_str_mv | 10.1266/ggs.88.301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513046361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513046361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-9c879f7c584508e717e2db14bb5ff0b91c47f1f83ce42deaa918dcad14d602e03</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoNY7Ife-ANkwBspzJrPmeTCi1LaWlrwRq9DJnMyzTqbrEkW6b83425X8CYnJE-ec3iD0HuCV4R23edpyispVwyTV-iMSIlb0ffqdd0zTtpedPIUnee8xphiJdkbdEp5pzhT7Aw93AcHKfkwNRMEaGxMCWZTfAxNgPI7pp-5cSlumpJMyDb57d87Z2yJqRl8GJe32RfIb9GJM3OGd4d6gX7c3ny__to-fru7v756bG3HWWmVlb1yvRWSCyyhJz3QcSB8GIRzeFDE8t4RJ5kFTkcwRhE5WjMSPnaYAmYX6NPeu03x1w5y0RufLcyzCRB3WRNBGOYd60hFP_6HruMuhTrdQlFJCZGiUpd7yqaYcwKnt8lvTHrWBOslYl0j1lLqGnGFPxyUu2ED4xF9ybQCd3ug3npr5hhmH-BfY_vEqu45a1ptGuP6YaIWrnHVL4uilDFFFtOXvWmdi5ng2Mqk4u0ML1OJw2jHc_tkkobA_gAgVqQn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512821185</pqid></control><display><type>article</type><title>Inferring gene correlation networks from transcription factor binding sites</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Mahdevar, Ghasem ; Nowzari-Dalini, Abbas ; Sadeghi, Mehdi</creator><creatorcontrib>Mahdevar, Ghasem ; Nowzari-Dalini, Abbas ; Sadeghi, Mehdi ; Institute of Biochemistry and Biophysics ; Department of Computer Science ; Institute for Research in Fundamental Sciences (IPM ; School of Mathematics ; National Institute of Genetic Engineering and Biotechnology ; University of Tehran ; Department of Bioinformatics ; Statistics ; and Computer Science ; School of Biological Sciences</creatorcontrib><description>Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter’s sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.</description><identifier>ISSN: 1341-7568</identifier><identifier>EISSN: 1880-5779</identifier><identifier>DOI: 10.1266/ggs.88.301</identifier><identifier>PMID: 24694393</identifier><language>eng</language><publisher>Japan: The Genetics Society of Japan</publisher><subject>Algorithms ; Binding Sites ; Gene Expression ; Gene Regulatory Networks ; neighbor joining ; neural networks ; Neural Networks (Computer) ; Promoter Regions, Genetic ; Protein Binding ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; self – organizing maps ; Software ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Genes & Genetic Systems, 2013/10/01, Vol.88(5), pp.301-309</ispartof><rights>2013 by The Genetics Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-9c879f7c584508e717e2db14bb5ff0b91c47f1f83ce42deaa918dcad14d602e03</citedby><cites>FETCH-LOGICAL-c643t-9c879f7c584508e717e2db14bb5ff0b91c47f1f83ce42deaa918dcad14d602e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,1879,4012,27912,27913,27914</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24694393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahdevar, Ghasem</creatorcontrib><creatorcontrib>Nowzari-Dalini, Abbas</creatorcontrib><creatorcontrib>Sadeghi, Mehdi</creatorcontrib><creatorcontrib>Institute of Biochemistry and Biophysics</creatorcontrib><creatorcontrib>Department of Computer Science</creatorcontrib><creatorcontrib>Institute for Research in Fundamental Sciences (IPM</creatorcontrib><creatorcontrib>School of Mathematics</creatorcontrib><creatorcontrib>National Institute of Genetic Engineering and Biotechnology</creatorcontrib><creatorcontrib>University of Tehran</creatorcontrib><creatorcontrib>Department of Bioinformatics</creatorcontrib><creatorcontrib>Statistics</creatorcontrib><creatorcontrib>and Computer Science</creatorcontrib><creatorcontrib>School of Biological Sciences</creatorcontrib><title>Inferring gene correlation networks from transcription factor binding sites</title><title>Genes & Genetic Systems</title><addtitle>Genes Genet. Syst.</addtitle><description>Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter’s sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.</description><subject>Algorithms</subject><subject>Binding Sites</subject><subject>Gene Expression</subject><subject>Gene Regulatory Networks</subject><subject>neighbor joining</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>self – organizing maps</subject><subject>Software</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1341-7568</issn><issn>1880-5779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV1rFDEUhoNY7Ife-ANkwBspzJrPmeTCi1LaWlrwRq9DJnMyzTqbrEkW6b83425X8CYnJE-ec3iD0HuCV4R23edpyispVwyTV-iMSIlb0ffqdd0zTtpedPIUnee8xphiJdkbdEp5pzhT7Aw93AcHKfkwNRMEaGxMCWZTfAxNgPI7pp-5cSlumpJMyDb57d87Z2yJqRl8GJe32RfIb9GJM3OGd4d6gX7c3ny__to-fru7v756bG3HWWmVlb1yvRWSCyyhJz3QcSB8GIRzeFDE8t4RJ5kFTkcwRhE5WjMSPnaYAmYX6NPeu03x1w5y0RufLcyzCRB3WRNBGOYd60hFP_6HruMuhTrdQlFJCZGiUpd7yqaYcwKnt8lvTHrWBOslYl0j1lLqGnGFPxyUu2ED4xF9ybQCd3ug3npr5hhmH-BfY_vEqu45a1ptGuP6YaIWrnHVL4uilDFFFtOXvWmdi5ng2Mqk4u0ML1OJw2jHc_tkkobA_gAgVqQn</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Mahdevar, Ghasem</creator><creator>Nowzari-Dalini, Abbas</creator><creator>Sadeghi, Mehdi</creator><general>The Genetics Society of Japan</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Inferring gene correlation networks from transcription factor binding sites</title><author>Mahdevar, Ghasem ; Nowzari-Dalini, Abbas ; Sadeghi, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-9c879f7c584508e717e2db14bb5ff0b91c47f1f83ce42deaa918dcad14d602e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Binding Sites</topic><topic>Gene Expression</topic><topic>Gene Regulatory Networks</topic><topic>neighbor joining</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>self – organizing maps</topic><topic>Software</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdevar, Ghasem</creatorcontrib><creatorcontrib>Nowzari-Dalini, Abbas</creatorcontrib><creatorcontrib>Sadeghi, Mehdi</creatorcontrib><creatorcontrib>Institute of Biochemistry and Biophysics</creatorcontrib><creatorcontrib>Department of Computer Science</creatorcontrib><creatorcontrib>Institute for Research in Fundamental Sciences (IPM</creatorcontrib><creatorcontrib>School of Mathematics</creatorcontrib><creatorcontrib>National Institute of Genetic Engineering and Biotechnology</creatorcontrib><creatorcontrib>University of Tehran</creatorcontrib><creatorcontrib>Department of Bioinformatics</creatorcontrib><creatorcontrib>Statistics</creatorcontrib><creatorcontrib>and Computer Science</creatorcontrib><creatorcontrib>School of Biological Sciences</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes & Genetic Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdevar, Ghasem</au><au>Nowzari-Dalini, Abbas</au><au>Sadeghi, Mehdi</au><aucorp>Institute of Biochemistry and Biophysics</aucorp><aucorp>Department of Computer Science</aucorp><aucorp>Institute for Research in Fundamental Sciences (IPM</aucorp><aucorp>School of Mathematics</aucorp><aucorp>National Institute of Genetic Engineering and Biotechnology</aucorp><aucorp>University of Tehran</aucorp><aucorp>Department of Bioinformatics</aucorp><aucorp>Statistics</aucorp><aucorp>and Computer Science</aucorp><aucorp>School of Biological Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring gene correlation networks from transcription factor binding sites</atitle><jtitle>Genes & Genetic Systems</jtitle><addtitle>Genes Genet. Syst.</addtitle><date>2013</date><risdate>2013</risdate><volume>88</volume><issue>5</issue><spage>301</spage><epage>309</epage><pages>301-309</pages><issn>1341-7568</issn><eissn>1880-5779</eissn><abstract>Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter’s sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.</abstract><cop>Japan</cop><pub>The Genetics Society of Japan</pub><pmid>24694393</pmid><doi>10.1266/ggs.88.301</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1341-7568 |
ispartof | Genes & Genetic Systems, 2013/10/01, Vol.88(5), pp.301-309 |
issn | 1341-7568 1880-5779 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513046361 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Algorithms Binding Sites Gene Expression Gene Regulatory Networks neighbor joining neural networks Neural Networks (Computer) Promoter Regions, Genetic Protein Binding Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism self – organizing maps Software Transcription Factors - genetics Transcription Factors - metabolism |
title | Inferring gene correlation networks from transcription factor binding sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20gene%20correlation%20networks%20from%20transcription%20factor%20binding%20sites&rft.jtitle=Genes%20&%20Genetic%20Systems&rft.au=Mahdevar,%20Ghasem&rft.aucorp=Institute%20of%20Biochemistry%20and%20Biophysics&rft.date=2013&rft.volume=88&rft.issue=5&rft.spage=301&rft.epage=309&rft.pages=301-309&rft.issn=1341-7568&rft.eissn=1880-5779&rft_id=info:doi/10.1266/ggs.88.301&rft_dat=%3Cproquest_cross%3E1513046361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512821185&rft_id=info:pmid/24694393&rfr_iscdi=true |