H-Ras forms dimers on membrane surfaces via a protein—protein interface

The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (8), p.2996-3001
Hauptverfasser: Lin, Wan-Chen, Iversen, Lars, Tu, Hsiung-Lin, Rhodes, Christopher, Christensen, Sune M., Iwig, Jeffrey S., Hansen, Scott D., Huang, William Y. C., Groves, Jay T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3001
container_issue 8
container_start_page 2996
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Lin, Wan-Chen
Iversen, Lars
Tu, Hsiung-Lin
Rhodes, Christopher
Christensen, Sune M.
Iwig, Jeffrey S.
Hansen, Scott D.
Huang, William Y. C.
Groves, Jay T.
description The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein—protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 103 molecules/μm2, and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.
doi_str_mv 10.1073/pnas.1321155111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1512333151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23770870</jstor_id><sourcerecordid>23770870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-99ee8c5a3dd89f1c2cedf50aa59dba92ce6c601a3d938d92bbe40ad3ff2a80fe3</originalsourceid><addsrcrecordid>eNqNkc9u1DAQhy0EokvhzAlkqRcuaWf8J7EvSFUFtFIlJARny3FsyGoTL3ZSiRsP0SfkSXDYZVu4wMm25ptPnvkR8hzhFKHhZ9vR5lPkDFFKRHxAVggaq1poeEhWAKyplGDiiDzJeQ0AWip4TI6YkFhjXa_I1WX1wWYaYhoy7frBp0zjSAc_tMmOnuY5Bet8pje9pZZuU5x8P_74fru_0X6c_C_kKXkU7Cb7Z_vzmHx6--bjxWV1_f7d1cX5deUkZ1OltffKScu7TumAjjnfBQnWSt21Vpdn7WrAUtdcdZq1rRdgOx4CswqC58fk9c67ndvBd86PU7Ibs039YNM3E21v_qyM_RfzOd4YrrnWHIrg1V6Q4tfZ58kMfXZ-synzxjkbVMBBC1WLf6MSGee8HP-BAtNaMyULevIXuo5zGsvSFkoorEWzCM92lEsx5-TDYUQEs4RvlvDNXfil4-X9zRz432nfA5bOgw7RKFM-twAvdsA6TzHdCXjTgGqA_wTOX7_n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504816471</pqid></control><display><type>article</type><title>H-Ras forms dimers on membrane surfaces via a protein—protein interface</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lin, Wan-Chen ; Iversen, Lars ; Tu, Hsiung-Lin ; Rhodes, Christopher ; Christensen, Sune M. ; Iwig, Jeffrey S. ; Hansen, Scott D. ; Huang, William Y. C. ; Groves, Jay T.</creator><creatorcontrib>Lin, Wan-Chen ; Iversen, Lars ; Tu, Hsiung-Lin ; Rhodes, Christopher ; Christensen, Sune M. ; Iwig, Jeffrey S. ; Hansen, Scott D. ; Huang, William Y. C. ; Groves, Jay T.</creatorcontrib><description>The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein—protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 103 molecules/μm2, and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1321155111</identifier><identifier>PMID: 24516166</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Anisotropy ; Biological Sciences ; Cell Membrane - metabolism ; Cell membranes ; Cellular biology ; Density ; Dimerization ; Dimers ; Fluorescence ; Fluorescence Polarization ; guanosinetriphosphatase ; Humans ; Lipids ; Magnetic Resonance Spectroscopy ; mammals ; Membranes ; Microscopy, Fluorescence ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleotides ; P branes ; phosphatidylinositol 3-kinase ; photobleaching ; point mutation ; Protein Conformation ; Protein Interaction Domains and Motifs - genetics ; Proteins ; ras Proteins - chemistry ; ras Proteins - metabolism ; Rotation ; spectroscopy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (8), p.2996-3001</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 25, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-99ee8c5a3dd89f1c2cedf50aa59dba92ce6c601a3d938d92bbe40ad3ff2a80fe3</citedby><cites>FETCH-LOGICAL-c532t-99ee8c5a3dd89f1c2cedf50aa59dba92ce6c601a3d938d92bbe40ad3ff2a80fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23770870$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23770870$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24516166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wan-Chen</creatorcontrib><creatorcontrib>Iversen, Lars</creatorcontrib><creatorcontrib>Tu, Hsiung-Lin</creatorcontrib><creatorcontrib>Rhodes, Christopher</creatorcontrib><creatorcontrib>Christensen, Sune M.</creatorcontrib><creatorcontrib>Iwig, Jeffrey S.</creatorcontrib><creatorcontrib>Hansen, Scott D.</creatorcontrib><creatorcontrib>Huang, William Y. C.</creatorcontrib><creatorcontrib>Groves, Jay T.</creatorcontrib><title>H-Ras forms dimers on membrane surfaces via a protein—protein interface</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein—protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 103 molecules/μm2, and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.</description><subject>Amino Acid Sequence</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cellular biology</subject><subject>Density</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Fluorescence</subject><subject>Fluorescence Polarization</subject><subject>guanosinetriphosphatase</subject><subject>Humans</subject><subject>Lipids</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>mammals</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>P branes</subject><subject>phosphatidylinositol 3-kinase</subject><subject>photobleaching</subject><subject>point mutation</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs - genetics</subject><subject>Proteins</subject><subject>ras Proteins - chemistry</subject><subject>ras Proteins - metabolism</subject><subject>Rotation</subject><subject>spectroscopy</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQhy0EokvhzAlkqRcuaWf8J7EvSFUFtFIlJARny3FsyGoTL3ZSiRsP0SfkSXDYZVu4wMm25ptPnvkR8hzhFKHhZ9vR5lPkDFFKRHxAVggaq1poeEhWAKyplGDiiDzJeQ0AWip4TI6YkFhjXa_I1WX1wWYaYhoy7frBp0zjSAc_tMmOnuY5Bet8pje9pZZuU5x8P_74fru_0X6c_C_kKXkU7Cb7Z_vzmHx6--bjxWV1_f7d1cX5deUkZ1OltffKScu7TumAjjnfBQnWSt21Vpdn7WrAUtdcdZq1rRdgOx4CswqC58fk9c67ndvBd86PU7Ibs039YNM3E21v_qyM_RfzOd4YrrnWHIrg1V6Q4tfZ58kMfXZ-synzxjkbVMBBC1WLf6MSGee8HP-BAtNaMyULevIXuo5zGsvSFkoorEWzCM92lEsx5-TDYUQEs4RvlvDNXfil4-X9zRz432nfA5bOgw7RKFM-twAvdsA6TzHdCXjTgGqA_wTOX7_n</recordid><startdate>20140225</startdate><enddate>20140225</enddate><creator>Lin, Wan-Chen</creator><creator>Iversen, Lars</creator><creator>Tu, Hsiung-Lin</creator><creator>Rhodes, Christopher</creator><creator>Christensen, Sune M.</creator><creator>Iwig, Jeffrey S.</creator><creator>Hansen, Scott D.</creator><creator>Huang, William Y. C.</creator><creator>Groves, Jay T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140225</creationdate><title>H-Ras forms dimers on membrane surfaces via a protein—protein interface</title><author>Lin, Wan-Chen ; Iversen, Lars ; Tu, Hsiung-Lin ; Rhodes, Christopher ; Christensen, Sune M. ; Iwig, Jeffrey S. ; Hansen, Scott D. ; Huang, William Y. C. ; Groves, Jay T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-99ee8c5a3dd89f1c2cedf50aa59dba92ce6c601a3d938d92bbe40ad3ff2a80fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cellular biology</topic><topic>Density</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Fluorescence</topic><topic>Fluorescence Polarization</topic><topic>guanosinetriphosphatase</topic><topic>Humans</topic><topic>Lipids</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>mammals</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>P branes</topic><topic>phosphatidylinositol 3-kinase</topic><topic>photobleaching</topic><topic>point mutation</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs - genetics</topic><topic>Proteins</topic><topic>ras Proteins - chemistry</topic><topic>ras Proteins - metabolism</topic><topic>Rotation</topic><topic>spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wan-Chen</creatorcontrib><creatorcontrib>Iversen, Lars</creatorcontrib><creatorcontrib>Tu, Hsiung-Lin</creatorcontrib><creatorcontrib>Rhodes, Christopher</creatorcontrib><creatorcontrib>Christensen, Sune M.</creatorcontrib><creatorcontrib>Iwig, Jeffrey S.</creatorcontrib><creatorcontrib>Hansen, Scott D.</creatorcontrib><creatorcontrib>Huang, William Y. C.</creatorcontrib><creatorcontrib>Groves, Jay T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wan-Chen</au><au>Iversen, Lars</au><au>Tu, Hsiung-Lin</au><au>Rhodes, Christopher</au><au>Christensen, Sune M.</au><au>Iwig, Jeffrey S.</au><au>Hansen, Scott D.</au><au>Huang, William Y. C.</au><au>Groves, Jay T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-Ras forms dimers on membrane surfaces via a protein—protein interface</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-25</date><risdate>2014</risdate><volume>111</volume><issue>8</issue><spage>2996</spage><epage>3001</epage><pages>2996-3001</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The lipid-anchored small GTPase Ras is an important signaling node in mammalian cells. A number of observations suggest that Ras is laterally organized within the cell membrane, and this may play a regulatory role in its activation. Lipid anchors composed of palmitoyl and farnesyl moieties in H-, N-, and K-Ras are widely suspected to be responsible for guiding protein organization in membranes. Here, we report that H-Ras forms a dimer on membrane surfaces through a protein—protein binding interface. A Y64A point mutation in the switch II region, known to prevent Son of sevenless and PI3K effector interactions, abolishes dimer formation. This suggests that the switch II region, near the nucleotide binding cleft, is either part of, or allosterically coupled to, the dimer interface. By tethering H-Ras to bilayers via a membrane-miscible lipid tail, we show that dimer formation is mediated by protein interactions and does not require lipid anchor clustering. We quantitatively characterize H-Ras dimerization in supported membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, time-resolved fluorescence anisotropy, single-molecule tracking, and step photobleaching analysis. The 2D dimerization Kd is measured to be ∼1 × 103 molecules/μm2, and no higher-order oligomers were observed. Dimerization only occurs on the membrane surface; H-Ras is strictly monomeric at comparable densities in solution. Analysis of a number of H-Ras constructs, including key changes to the lipidation pattern of the hypervariable region, suggest that dimerization is a general property of native H-Ras on membrane surfaces.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24516166</pmid><doi>10.1073/pnas.1321155111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (8), p.2996-3001
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1512333151
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Anisotropy
Biological Sciences
Cell Membrane - metabolism
Cell membranes
Cellular biology
Density
Dimerization
Dimers
Fluorescence
Fluorescence Polarization
guanosinetriphosphatase
Humans
Lipids
Magnetic Resonance Spectroscopy
mammals
Membranes
Microscopy, Fluorescence
Models, Molecular
Molecular Sequence Data
Mutation
Nucleotides
P branes
phosphatidylinositol 3-kinase
photobleaching
point mutation
Protein Conformation
Protein Interaction Domains and Motifs - genetics
Proteins
ras Proteins - chemistry
ras Proteins - metabolism
Rotation
spectroscopy
title H-Ras forms dimers on membrane surfaces via a protein—protein interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-Ras%20forms%20dimers%20on%20membrane%20surfaces%20via%20a%20protein%E2%80%94protein%20interface&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lin,%20Wan-Chen&rft.date=2014-02-25&rft.volume=111&rft.issue=8&rft.spage=2996&rft.epage=3001&rft.pages=2996-3001&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1321155111&rft_dat=%3Cjstor_proqu%3E23770870%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504816471&rft_id=info:pmid/24516166&rft_jstor_id=23770870&rfr_iscdi=true