Towards a Typing Strategy for Arcobacter Species Isolated from Humans and Animals and Assessment of the In Vitro Genomic Stability
Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fra...
Gespeichert in:
Veröffentlicht in: | Foodborne pathogens and disease 2014-04, Vol.11 (4), p.272-280 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 4 |
container_start_page | 272 |
container_title | Foodborne pathogens and disease |
container_volume | 11 |
creator | DOUIDAH, Laid DE ZUTTER, Lieven BARE, Julie HOUF, Kurt |
description | Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fragment-length polymorphism, and enterobacterial repetitive intergenic consensus (ERIC)-PCR have already been applied, but without proper validation or comparison. At present, no criterion standard typing method or strategy has been proposed. Therefore, after the validation of PFGE, those commonly applied typing methods were compared for the characterization of six human- and animal-associated Arcobacter species. With a limited number of isolates to be characterized, PFGE with restriction by KpnI is proposed as the first method of choice. However, ERIC-PCR represents a more convenient genomic fingerprinting technique when a large number of isolates is involved. Therefore, a first clustering of similar patterns obtained after ERIC-PCR, with a subsequent typing of some representatives per ERIC cluster by PFGE, is recommended. As multiple genotypes are commonly isolated from the same host and food, genomic plasticity has been suggested. The in vitro genomic stability of Arcobacter butzleri and A. cryaerophilus was assessed under two temperatures and two oxygen concentrations. Variability in the genomic profile of A. cryaerophilus was observed after different passages for different strains at 37°C under microaerobic conditions. The bias due to these genomic changes must be taken into account in the evaluation of the relationship of strains. |
doi_str_mv | 10.1089/fpd.2013.1661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511822583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1511822583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-c6531c0799543b161a3bc5b60ebe345aca6bb055bf7a8723e79096619f9810fb3</originalsourceid><addsrcrecordid>eNpFkD1PHDEQhi1EBISkTIvcINHsxR9r77o8oQAnIVFwSbuyvWPiaNdebJ-ia_PL4xOXUM0Uz_uO5kHoCyUrSnr11S3jihHKV1RKeoIuqBCy6SgTp4edi4bTlp6jjzn_IoQpJrozdM7alhDVywv0Zxt_6zRmrPF2v_jwgp9L0gVe9tjFhNfJRqNtgYSfF7AeMt7kOFVgxC7FGT_sZh1qOox4Hfysp-OeM-Q8Qyg4Olx-At4E_MOXFPE9hDh7W-9o4ydf9p_QB1dz8Pk4L9H3u2_b24fm8el-c7t-bCxnvDRWCk4t6ZQSLTdUUs2NFUYSMMBboa2WxhAhjOt03zEOnSKqOlFO9ZQ4wy_RzVvvkuLrDnIZZp8tTJMOEHd5oILSnjHR84o2b6hNMecEblhSfS7tB0qGg_ahah8O2oeD9spfHat3ZobxP_3PcwWuj4DOVk8u6WB9fuf6thOsk_wvVZSLMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511822583</pqid></control><display><type>article</type><title>Towards a Typing Strategy for Arcobacter Species Isolated from Humans and Animals and Assessment of the In Vitro Genomic Stability</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>DOUIDAH, Laid ; DE ZUTTER, Lieven ; BARE, Julie ; HOUF, Kurt</creator><creatorcontrib>DOUIDAH, Laid ; DE ZUTTER, Lieven ; BARE, Julie ; HOUF, Kurt</creatorcontrib><description>Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fragment-length polymorphism, and enterobacterial repetitive intergenic consensus (ERIC)-PCR have already been applied, but without proper validation or comparison. At present, no criterion standard typing method or strategy has been proposed. Therefore, after the validation of PFGE, those commonly applied typing methods were compared for the characterization of six human- and animal-associated Arcobacter species. With a limited number of isolates to be characterized, PFGE with restriction by KpnI is proposed as the first method of choice. However, ERIC-PCR represents a more convenient genomic fingerprinting technique when a large number of isolates is involved. Therefore, a first clustering of similar patterns obtained after ERIC-PCR, with a subsequent typing of some representatives per ERIC cluster by PFGE, is recommended. As multiple genotypes are commonly isolated from the same host and food, genomic plasticity has been suggested. The in vitro genomic stability of Arcobacter butzleri and A. cryaerophilus was assessed under two temperatures and two oxygen concentrations. Variability in the genomic profile of A. cryaerophilus was observed after different passages for different strains at 37°C under microaerobic conditions. The bias due to these genomic changes must be taken into account in the evaluation of the relationship of strains.</description><identifier>ISSN: 1535-3141</identifier><identifier>EISSN: 1556-7125</identifier><identifier>DOI: 10.1089/fpd.2013.1661</identifier><identifier>PMID: 24400986</identifier><language>eng</language><publisher>Larchmont, NY: Liebert</publisher><subject>Amplified Fragment Length Polymorphism Analysis ; Animals ; Arcobacter - classification ; Arcobacter - genetics ; Arcobacter - isolation & purification ; Bacterial Typing Techniques - methods ; Biological and medical sciences ; Cattle ; Cluster Analysis ; DNA, Bacterial - genetics ; Electrophoresis, Gel, Pulsed-Field ; Feces - microbiology ; Food industries ; Food Microbiology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genomic Instability ; Genotype ; Gram-Negative Bacterial Infections - microbiology ; Horses ; Humans ; Hygiene and safety ; Polymerase Chain Reaction ; Swine</subject><ispartof>Foodborne pathogens and disease, 2014-04, Vol.11 (4), p.272-280</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-c6531c0799543b161a3bc5b60ebe345aca6bb055bf7a8723e79096619f9810fb3</citedby><cites>FETCH-LOGICAL-c323t-c6531c0799543b161a3bc5b60ebe345aca6bb055bf7a8723e79096619f9810fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28475276$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24400986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DOUIDAH, Laid</creatorcontrib><creatorcontrib>DE ZUTTER, Lieven</creatorcontrib><creatorcontrib>BARE, Julie</creatorcontrib><creatorcontrib>HOUF, Kurt</creatorcontrib><title>Towards a Typing Strategy for Arcobacter Species Isolated from Humans and Animals and Assessment of the In Vitro Genomic Stability</title><title>Foodborne pathogens and disease</title><addtitle>Foodborne Pathog Dis</addtitle><description>Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fragment-length polymorphism, and enterobacterial repetitive intergenic consensus (ERIC)-PCR have already been applied, but without proper validation or comparison. At present, no criterion standard typing method or strategy has been proposed. Therefore, after the validation of PFGE, those commonly applied typing methods were compared for the characterization of six human- and animal-associated Arcobacter species. With a limited number of isolates to be characterized, PFGE with restriction by KpnI is proposed as the first method of choice. However, ERIC-PCR represents a more convenient genomic fingerprinting technique when a large number of isolates is involved. Therefore, a first clustering of similar patterns obtained after ERIC-PCR, with a subsequent typing of some representatives per ERIC cluster by PFGE, is recommended. As multiple genotypes are commonly isolated from the same host and food, genomic plasticity has been suggested. The in vitro genomic stability of Arcobacter butzleri and A. cryaerophilus was assessed under two temperatures and two oxygen concentrations. Variability in the genomic profile of A. cryaerophilus was observed after different passages for different strains at 37°C under microaerobic conditions. The bias due to these genomic changes must be taken into account in the evaluation of the relationship of strains.</description><subject>Amplified Fragment Length Polymorphism Analysis</subject><subject>Animals</subject><subject>Arcobacter - classification</subject><subject>Arcobacter - genetics</subject><subject>Arcobacter - isolation & purification</subject><subject>Bacterial Typing Techniques - methods</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Cluster Analysis</subject><subject>DNA, Bacterial - genetics</subject><subject>Electrophoresis, Gel, Pulsed-Field</subject><subject>Feces - microbiology</subject><subject>Food industries</subject><subject>Food Microbiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genomic Instability</subject><subject>Genotype</subject><subject>Gram-Negative Bacterial Infections - microbiology</subject><subject>Horses</subject><subject>Humans</subject><subject>Hygiene and safety</subject><subject>Polymerase Chain Reaction</subject><subject>Swine</subject><issn>1535-3141</issn><issn>1556-7125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkD1PHDEQhi1EBISkTIvcINHsxR9r77o8oQAnIVFwSbuyvWPiaNdebJ-ia_PL4xOXUM0Uz_uO5kHoCyUrSnr11S3jihHKV1RKeoIuqBCy6SgTp4edi4bTlp6jjzn_IoQpJrozdM7alhDVywv0Zxt_6zRmrPF2v_jwgp9L0gVe9tjFhNfJRqNtgYSfF7AeMt7kOFVgxC7FGT_sZh1qOox4Hfysp-OeM-Q8Qyg4Olx-At4E_MOXFPE9hDh7W-9o4ydf9p_QB1dz8Pk4L9H3u2_b24fm8el-c7t-bCxnvDRWCk4t6ZQSLTdUUs2NFUYSMMBboa2WxhAhjOt03zEOnSKqOlFO9ZQ4wy_RzVvvkuLrDnIZZp8tTJMOEHd5oILSnjHR84o2b6hNMecEblhSfS7tB0qGg_ahah8O2oeD9spfHat3ZobxP_3PcwWuj4DOVk8u6WB9fuf6thOsk_wvVZSLMw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>DOUIDAH, Laid</creator><creator>DE ZUTTER, Lieven</creator><creator>BARE, Julie</creator><creator>HOUF, Kurt</creator><general>Liebert</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140401</creationdate><title>Towards a Typing Strategy for Arcobacter Species Isolated from Humans and Animals and Assessment of the In Vitro Genomic Stability</title><author>DOUIDAH, Laid ; DE ZUTTER, Lieven ; BARE, Julie ; HOUF, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-c6531c0799543b161a3bc5b60ebe345aca6bb055bf7a8723e79096619f9810fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplified Fragment Length Polymorphism Analysis</topic><topic>Animals</topic><topic>Arcobacter - classification</topic><topic>Arcobacter - genetics</topic><topic>Arcobacter - isolation & purification</topic><topic>Bacterial Typing Techniques - methods</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Cluster Analysis</topic><topic>DNA, Bacterial - genetics</topic><topic>Electrophoresis, Gel, Pulsed-Field</topic><topic>Feces - microbiology</topic><topic>Food industries</topic><topic>Food Microbiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genomic Instability</topic><topic>Genotype</topic><topic>Gram-Negative Bacterial Infections - microbiology</topic><topic>Horses</topic><topic>Humans</topic><topic>Hygiene and safety</topic><topic>Polymerase Chain Reaction</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOUIDAH, Laid</creatorcontrib><creatorcontrib>DE ZUTTER, Lieven</creatorcontrib><creatorcontrib>BARE, Julie</creatorcontrib><creatorcontrib>HOUF, Kurt</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Foodborne pathogens and disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOUIDAH, Laid</au><au>DE ZUTTER, Lieven</au><au>BARE, Julie</au><au>HOUF, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Typing Strategy for Arcobacter Species Isolated from Humans and Animals and Assessment of the In Vitro Genomic Stability</atitle><jtitle>Foodborne pathogens and disease</jtitle><addtitle>Foodborne Pathog Dis</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>11</volume><issue>4</issue><spage>272</spage><epage>280</epage><pages>272-280</pages><issn>1535-3141</issn><eissn>1556-7125</eissn><abstract>Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fragment-length polymorphism, and enterobacterial repetitive intergenic consensus (ERIC)-PCR have already been applied, but without proper validation or comparison. At present, no criterion standard typing method or strategy has been proposed. Therefore, after the validation of PFGE, those commonly applied typing methods were compared for the characterization of six human- and animal-associated Arcobacter species. With a limited number of isolates to be characterized, PFGE with restriction by KpnI is proposed as the first method of choice. However, ERIC-PCR represents a more convenient genomic fingerprinting technique when a large number of isolates is involved. Therefore, a first clustering of similar patterns obtained after ERIC-PCR, with a subsequent typing of some representatives per ERIC cluster by PFGE, is recommended. As multiple genotypes are commonly isolated from the same host and food, genomic plasticity has been suggested. The in vitro genomic stability of Arcobacter butzleri and A. cryaerophilus was assessed under two temperatures and two oxygen concentrations. Variability in the genomic profile of A. cryaerophilus was observed after different passages for different strains at 37°C under microaerobic conditions. The bias due to these genomic changes must be taken into account in the evaluation of the relationship of strains.</abstract><cop>Larchmont, NY</cop><pub>Liebert</pub><pmid>24400986</pmid><doi>10.1089/fpd.2013.1661</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3141 |
ispartof | Foodborne pathogens and disease, 2014-04, Vol.11 (4), p.272-280 |
issn | 1535-3141 1556-7125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1511822583 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Amplified Fragment Length Polymorphism Analysis Animals Arcobacter - classification Arcobacter - genetics Arcobacter - isolation & purification Bacterial Typing Techniques - methods Biological and medical sciences Cattle Cluster Analysis DNA, Bacterial - genetics Electrophoresis, Gel, Pulsed-Field Feces - microbiology Food industries Food Microbiology Fundamental and applied biological sciences. Psychology General aspects Genomic Instability Genotype Gram-Negative Bacterial Infections - microbiology Horses Humans Hygiene and safety Polymerase Chain Reaction Swine |
title | Towards a Typing Strategy for Arcobacter Species Isolated from Humans and Animals and Assessment of the In Vitro Genomic Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Typing%20Strategy%20for%20Arcobacter%20Species%20Isolated%20from%20Humans%20and%20Animals%20and%20Assessment%20of%20the%20In%20Vitro%20Genomic%20Stability&rft.jtitle=Foodborne%20pathogens%20and%20disease&rft.au=DOUIDAH,%20Laid&rft.date=2014-04-01&rft.volume=11&rft.issue=4&rft.spage=272&rft.epage=280&rft.pages=272-280&rft.issn=1535-3141&rft.eissn=1556-7125&rft_id=info:doi/10.1089/fpd.2013.1661&rft_dat=%3Cproquest_cross%3E1511822583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511822583&rft_id=info:pmid/24400986&rfr_iscdi=true |