Chemometric classification techniques as a tool for solving problems in analytical chemistry
Supervised pattern recognition (classification) techniques, i.e., the family of chemometric methods whose aim is the prediction of a qualitative response on a set of samples, represent a very important assortment of tools for solving problems in several areas of applied analytical chemistry. This pa...
Gespeichert in:
Veröffentlicht in: | Journal of AOAC International 2014-01, Vol.97 (1), p.19-28 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Journal of AOAC International |
container_volume | 97 |
creator | Bevilacqua, Marta Nescatelli, Riccardo Bucci, Remo Magrì, Andrea D Magrì, Antonio L Marini, Federico |
description | Supervised pattern recognition (classification) techniques, i.e., the family of chemometric methods whose aim is the prediction of a qualitative response on a set of samples, represent a very important assortment of tools for solving problems in several areas of applied analytical chemistry. This paper describes the theory behind the chemometric classification techniques most frequently used in analytical chemistry together with some examples of their application to real-world problems. |
doi_str_mv | 10.5740/jaoacint.SGEBevilacqua |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511396214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A367643880</galeid><sourcerecordid>A367643880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-991c819e2b46a24607eefeb87a1979c436e53160fc33244f76a1e2f97ec2e5473</originalsourceid><addsrcrecordid>eNpVkVtrXCEURiW05Nb-heBjX87U29HjYzrkUgj0oe1b4bDHbBODRxN1AvPvY5ikEBQU2WvvhR8hZ5ytRqPY9wfI4EJqq99XFz_wOURwT1s4IMfcKjUYK8SnfmeaDVIYfkROan1gTHHNxCE5EkobMY36mPxb3-OSF2wlOOoi1Bp8cNBCTrShu0_haYuVQt-05Rypz4XWHJ9DuqOPJW8iLpWGRCFB3LWORup6y1Bb2X0hnz3Eil_fzlPy9_Liz_p6uPl19XN9fjM4aac2WMvdxC2KjdLQ1ZhB9LiZDHBrrFNS4yi7uXdSCqW80cBReGvQCRyVkafk275vF3rVbXOf7zBGSJi3deYj59JqwVUvXe1L7yDiHJLPrYDr67Y7u5zQh_5-LrXRSk4T64DeA67kWgv6-bGEBcpu5mx-jWJ-j2L-EEUHz96ktpsFb_9j738vXwB8cowZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511396214</pqid></control><display><type>article</type><title>Chemometric classification techniques as a tool for solving problems in analytical chemistry</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bevilacqua, Marta ; Nescatelli, Riccardo ; Bucci, Remo ; Magrì, Andrea D ; Magrì, Antonio L ; Marini, Federico</creator><creatorcontrib>Bevilacqua, Marta ; Nescatelli, Riccardo ; Bucci, Remo ; Magrì, Andrea D ; Magrì, Antonio L ; Marini, Federico</creatorcontrib><description>Supervised pattern recognition (classification) techniques, i.e., the family of chemometric methods whose aim is the prediction of a qualitative response on a set of samples, represent a very important assortment of tools for solving problems in several areas of applied analytical chemistry. This paper describes the theory behind the chemometric classification techniques most frequently used in analytical chemistry together with some examples of their application to real-world problems.</description><identifier>ISSN: 1060-3271</identifier><identifier>EISSN: 1944-7922</identifier><identifier>DOI: 10.5740/jaoacint.SGEBevilacqua</identifier><identifier>PMID: 24672856</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Chemical research ; Chemistry Techniques, Analytical - methods ; Chemistry, Analytic ; Models, Theoretical ; Pattern Recognition, Automated ; Problem solving ; Reproducibility of Results ; Research Design</subject><ispartof>Journal of AOAC International, 2014-01, Vol.97 (1), p.19-28</ispartof><rights>COPYRIGHT 2014 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-991c819e2b46a24607eefeb87a1979c436e53160fc33244f76a1e2f97ec2e5473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24672856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bevilacqua, Marta</creatorcontrib><creatorcontrib>Nescatelli, Riccardo</creatorcontrib><creatorcontrib>Bucci, Remo</creatorcontrib><creatorcontrib>Magrì, Andrea D</creatorcontrib><creatorcontrib>Magrì, Antonio L</creatorcontrib><creatorcontrib>Marini, Federico</creatorcontrib><title>Chemometric classification techniques as a tool for solving problems in analytical chemistry</title><title>Journal of AOAC International</title><addtitle>J AOAC Int</addtitle><description>Supervised pattern recognition (classification) techniques, i.e., the family of chemometric methods whose aim is the prediction of a qualitative response on a set of samples, represent a very important assortment of tools for solving problems in several areas of applied analytical chemistry. This paper describes the theory behind the chemometric classification techniques most frequently used in analytical chemistry together with some examples of their application to real-world problems.</description><subject>Chemical research</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Chemistry, Analytic</subject><subject>Models, Theoretical</subject><subject>Pattern Recognition, Automated</subject><subject>Problem solving</subject><subject>Reproducibility of Results</subject><subject>Research Design</subject><issn>1060-3271</issn><issn>1944-7922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtrXCEURiW05Nb-heBjX87U29HjYzrkUgj0oe1b4bDHbBODRxN1AvPvY5ikEBQU2WvvhR8hZ5ytRqPY9wfI4EJqq99XFz_wOURwT1s4IMfcKjUYK8SnfmeaDVIYfkROan1gTHHNxCE5EkobMY36mPxb3-OSF2wlOOoi1Bp8cNBCTrShu0_haYuVQt-05Rypz4XWHJ9DuqOPJW8iLpWGRCFB3LWORup6y1Bb2X0hnz3Eil_fzlPy9_Liz_p6uPl19XN9fjM4aac2WMvdxC2KjdLQ1ZhB9LiZDHBrrFNS4yi7uXdSCqW80cBReGvQCRyVkafk275vF3rVbXOf7zBGSJi3deYj59JqwVUvXe1L7yDiHJLPrYDr67Y7u5zQh_5-LrXRSk4T64DeA67kWgv6-bGEBcpu5mx-jWJ-j2L-EEUHz96ktpsFb_9j738vXwB8cowZ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Bevilacqua, Marta</creator><creator>Nescatelli, Riccardo</creator><creator>Bucci, Remo</creator><creator>Magrì, Andrea D</creator><creator>Magrì, Antonio L</creator><creator>Marini, Federico</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201401</creationdate><title>Chemometric classification techniques as a tool for solving problems in analytical chemistry</title><author>Bevilacqua, Marta ; Nescatelli, Riccardo ; Bucci, Remo ; Magrì, Andrea D ; Magrì, Antonio L ; Marini, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-991c819e2b46a24607eefeb87a1979c436e53160fc33244f76a1e2f97ec2e5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical research</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Chemistry, Analytic</topic><topic>Models, Theoretical</topic><topic>Pattern Recognition, Automated</topic><topic>Problem solving</topic><topic>Reproducibility of Results</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevilacqua, Marta</creatorcontrib><creatorcontrib>Nescatelli, Riccardo</creatorcontrib><creatorcontrib>Bucci, Remo</creatorcontrib><creatorcontrib>Magrì, Andrea D</creatorcontrib><creatorcontrib>Magrì, Antonio L</creatorcontrib><creatorcontrib>Marini, Federico</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of AOAC International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevilacqua, Marta</au><au>Nescatelli, Riccardo</au><au>Bucci, Remo</au><au>Magrì, Andrea D</au><au>Magrì, Antonio L</au><au>Marini, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemometric classification techniques as a tool for solving problems in analytical chemistry</atitle><jtitle>Journal of AOAC International</jtitle><addtitle>J AOAC Int</addtitle><date>2014-01</date><risdate>2014</risdate><volume>97</volume><issue>1</issue><spage>19</spage><epage>28</epage><pages>19-28</pages><issn>1060-3271</issn><eissn>1944-7922</eissn><abstract>Supervised pattern recognition (classification) techniques, i.e., the family of chemometric methods whose aim is the prediction of a qualitative response on a set of samples, represent a very important assortment of tools for solving problems in several areas of applied analytical chemistry. This paper describes the theory behind the chemometric classification techniques most frequently used in analytical chemistry together with some examples of their application to real-world problems.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24672856</pmid><doi>10.5740/jaoacint.SGEBevilacqua</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-3271 |
ispartof | Journal of AOAC International, 2014-01, Vol.97 (1), p.19-28 |
issn | 1060-3271 1944-7922 |
language | eng |
recordid | cdi_proquest_miscellaneous_1511396214 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Chemical research Chemistry Techniques, Analytical - methods Chemistry, Analytic Models, Theoretical Pattern Recognition, Automated Problem solving Reproducibility of Results Research Design |
title | Chemometric classification techniques as a tool for solving problems in analytical chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemometric%20classification%20techniques%20as%20a%20tool%20for%20solving%20problems%20in%20analytical%20chemistry&rft.jtitle=Journal%20of%20AOAC%20International&rft.au=Bevilacqua,%20Marta&rft.date=2014-01&rft.volume=97&rft.issue=1&rft.spage=19&rft.epage=28&rft.pages=19-28&rft.issn=1060-3271&rft.eissn=1944-7922&rft_id=info:doi/10.5740/jaoacint.SGEBevilacqua&rft_dat=%3Cgale_proqu%3EA367643880%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511396214&rft_id=info:pmid/24672856&rft_galeid=A367643880&rfr_iscdi=true |