Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions
Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmo...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-03, Vol.343 (6178), p.1496-1499 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1499 |
---|---|
container_issue | 6178 |
container_start_page | 1496 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 343 |
creator | Tan, Shu Fen Wu, Lin Yang, Joel K.W. Bai, Ping Bosman, Michel Nijhuis, Christian A. |
description | Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps. |
doi_str_mv | 10.1126/science.1248797 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511394498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24743532</jstor_id><sourcerecordid>24743532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlbXrpQBN26mzWsmmaUUn1R8UNdDJnMHWjKJJpNF_70prSKuLtzv3I_LQeic4CkhtJwFvQKrYUool6ISB2hMcFXkFcXsEI0xZmUusShG6CSENcYpq9gxGlFeiqIq5BjN36KyQ-yzV6NC72z2DsFZlTpDNnd28M4YaLNmkz07Azoa5bNltBZM9hStHlbOhlN01CkT4Gw_J-jj7nY5f8gXL_eP85tFrjlhQ96qkmjBOQZgAI2STaVZ2wDWHEssCyJKJijtBCdN2vKCt1xCR0F3mMmyZRN0vev99O4rQhjqfhU0GKMsuBhqUhDCKs4rmdCrf-jaRW_Td1sKpy9YSRM121HauxA8dPWnX_XKb2qC663feu-33vtNF5f73tj00P7yP0ITcLED1mFw_k8uOCsYZd9FtICw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510744362</pqid></control><display><type>article</type><title>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Tan, Shu Fen ; Wu, Lin ; Yang, Joel K.W. ; Bai, Ping ; Bosman, Michel ; Nijhuis, Christian A.</creator><creatorcontrib>Tan, Shu Fen ; Wu, Lin ; Yang, Joel K.W. ; Bai, Ping ; Bosman, Michel ; Nijhuis, Christian A.</creatorcontrib><description>Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1248797</identifier><identifier>PMID: 24675958</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Broadband transmission ; Dimers ; Electrons ; Molecules ; Nanoparticles ; Nanotechnology ; Optics ; Plasma spectra ; Plasmons ; Quantum physics ; Quantum tunneling ; Resonators ; Tunnel junctions ; Wave propagation</subject><ispartof>Science (American Association for the Advancement of Science), 2014-03, Vol.343 (6178), p.1496-1499</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</citedby><cites>FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24743532$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24743532$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24675958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Shu Fen</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yang, Joel K.W.</creatorcontrib><creatorcontrib>Bai, Ping</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><creatorcontrib>Nijhuis, Christian A.</creatorcontrib><title>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.</description><subject>Broadband transmission</subject><subject>Dimers</subject><subject>Electrons</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Plasma spectra</subject><subject>Plasmons</subject><subject>Quantum physics</subject><subject>Quantum tunneling</subject><subject>Resonators</subject><subject>Tunnel junctions</subject><subject>Wave propagation</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEURoMotlbXrpQBN26mzWsmmaUUn1R8UNdDJnMHWjKJJpNF_70prSKuLtzv3I_LQeic4CkhtJwFvQKrYUool6ISB2hMcFXkFcXsEI0xZmUusShG6CSENcYpq9gxGlFeiqIq5BjN36KyQ-yzV6NC72z2DsFZlTpDNnd28M4YaLNmkz07Azoa5bNltBZM9hStHlbOhlN01CkT4Gw_J-jj7nY5f8gXL_eP85tFrjlhQ96qkmjBOQZgAI2STaVZ2wDWHEssCyJKJijtBCdN2vKCt1xCR0F3mMmyZRN0vev99O4rQhjqfhU0GKMsuBhqUhDCKs4rmdCrf-jaRW_Td1sKpy9YSRM121HauxA8dPWnX_XKb2qC663feu-33vtNF5f73tj00P7yP0ITcLED1mFw_k8uOCsYZd9FtICw</recordid><startdate>20140328</startdate><enddate>20140328</enddate><creator>Tan, Shu Fen</creator><creator>Wu, Lin</creator><creator>Yang, Joel K.W.</creator><creator>Bai, Ping</creator><creator>Bosman, Michel</creator><creator>Nijhuis, Christian A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140328</creationdate><title>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</title><author>Tan, Shu Fen ; Wu, Lin ; Yang, Joel K.W. ; Bai, Ping ; Bosman, Michel ; Nijhuis, Christian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Broadband transmission</topic><topic>Dimers</topic><topic>Electrons</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Plasma spectra</topic><topic>Plasmons</topic><topic>Quantum physics</topic><topic>Quantum tunneling</topic><topic>Resonators</topic><topic>Tunnel junctions</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shu Fen</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yang, Joel K.W.</creatorcontrib><creatorcontrib>Bai, Ping</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><creatorcontrib>Nijhuis, Christian A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shu Fen</au><au>Wu, Lin</au><au>Yang, Joel K.W.</au><au>Bai, Ping</au><au>Bosman, Michel</au><au>Nijhuis, Christian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-03-28</date><risdate>2014</risdate><volume>343</volume><issue>6178</issue><spage>1496</spage><epage>1499</epage><pages>1496-1499</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24675958</pmid><doi>10.1126/science.1248797</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-03, Vol.343 (6178), p.1496-1499 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1511394498 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Broadband transmission Dimers Electrons Molecules Nanoparticles Nanotechnology Optics Plasma spectra Plasmons Quantum physics Quantum tunneling Resonators Tunnel junctions Wave propagation |
title | Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Plasmon%20Resonances%20Controlled%20by%20Molecular%20Tunnel%20Junctions&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Tan,%20Shu%20Fen&rft.date=2014-03-28&rft.volume=343&rft.issue=6178&rft.spage=1496&rft.epage=1499&rft.pages=1496-1499&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1248797&rft_dat=%3Cjstor_proqu%3E24743532%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510744362&rft_id=info:pmid/24675958&rft_jstor_id=24743532&rfr_iscdi=true |