Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions

Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-03, Vol.343 (6178), p.1496-1499
Hauptverfasser: Tan, Shu Fen, Wu, Lin, Yang, Joel K.W., Bai, Ping, Bosman, Michel, Nijhuis, Christian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 6178
container_start_page 1496
container_title Science (American Association for the Advancement of Science)
container_volume 343
creator Tan, Shu Fen
Wu, Lin
Yang, Joel K.W.
Bai, Ping
Bosman, Michel
Nijhuis, Christian A.
description Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.
doi_str_mv 10.1126/science.1248797
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511394498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24743532</jstor_id><sourcerecordid>24743532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMotlbXrpQBN26mzWsmmaUUn1R8UNdDJnMHWjKJJpNF_70prSKuLtzv3I_LQeic4CkhtJwFvQKrYUool6ISB2hMcFXkFcXsEI0xZmUusShG6CSENcYpq9gxGlFeiqIq5BjN36KyQ-yzV6NC72z2DsFZlTpDNnd28M4YaLNmkz07Azoa5bNltBZM9hStHlbOhlN01CkT4Gw_J-jj7nY5f8gXL_eP85tFrjlhQ96qkmjBOQZgAI2STaVZ2wDWHEssCyJKJijtBCdN2vKCt1xCR0F3mMmyZRN0vev99O4rQhjqfhU0GKMsuBhqUhDCKs4rmdCrf-jaRW_Td1sKpy9YSRM121HauxA8dPWnX_XKb2qC663feu-33vtNF5f73tj00P7yP0ITcLED1mFw_k8uOCsYZd9FtICw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510744362</pqid></control><display><type>article</type><title>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Tan, Shu Fen ; Wu, Lin ; Yang, Joel K.W. ; Bai, Ping ; Bosman, Michel ; Nijhuis, Christian A.</creator><creatorcontrib>Tan, Shu Fen ; Wu, Lin ; Yang, Joel K.W. ; Bai, Ping ; Bosman, Michel ; Nijhuis, Christian A.</creatorcontrib><description>Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1248797</identifier><identifier>PMID: 24675958</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Broadband transmission ; Dimers ; Electrons ; Molecules ; Nanoparticles ; Nanotechnology ; Optics ; Plasma spectra ; Plasmons ; Quantum physics ; Quantum tunneling ; Resonators ; Tunnel junctions ; Wave propagation</subject><ispartof>Science (American Association for the Advancement of Science), 2014-03, Vol.343 (6178), p.1496-1499</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</citedby><cites>FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24743532$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24743532$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24675958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Shu Fen</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yang, Joel K.W.</creatorcontrib><creatorcontrib>Bai, Ping</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><creatorcontrib>Nijhuis, Christian A.</creatorcontrib><title>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.</description><subject>Broadband transmission</subject><subject>Dimers</subject><subject>Electrons</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Plasma spectra</subject><subject>Plasmons</subject><subject>Quantum physics</subject><subject>Quantum tunneling</subject><subject>Resonators</subject><subject>Tunnel junctions</subject><subject>Wave propagation</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEURoMotlbXrpQBN26mzWsmmaUUn1R8UNdDJnMHWjKJJpNF_70prSKuLtzv3I_LQeic4CkhtJwFvQKrYUool6ISB2hMcFXkFcXsEI0xZmUusShG6CSENcYpq9gxGlFeiqIq5BjN36KyQ-yzV6NC72z2DsFZlTpDNnd28M4YaLNmkz07Azoa5bNltBZM9hStHlbOhlN01CkT4Gw_J-jj7nY5f8gXL_eP85tFrjlhQ96qkmjBOQZgAI2STaVZ2wDWHEssCyJKJijtBCdN2vKCt1xCR0F3mMmyZRN0vev99O4rQhjqfhU0GKMsuBhqUhDCKs4rmdCrf-jaRW_Td1sKpy9YSRM121HauxA8dPWnX_XKb2qC663feu-33vtNF5f73tj00P7yP0ITcLED1mFw_k8uOCsYZd9FtICw</recordid><startdate>20140328</startdate><enddate>20140328</enddate><creator>Tan, Shu Fen</creator><creator>Wu, Lin</creator><creator>Yang, Joel K.W.</creator><creator>Bai, Ping</creator><creator>Bosman, Michel</creator><creator>Nijhuis, Christian A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140328</creationdate><title>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</title><author>Tan, Shu Fen ; Wu, Lin ; Yang, Joel K.W. ; Bai, Ping ; Bosman, Michel ; Nijhuis, Christian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-da61c7440ee3eeba8b9c3dbe0c4080851763722f741bbe0454d48ef2ecf0386d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Broadband transmission</topic><topic>Dimers</topic><topic>Electrons</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Plasma spectra</topic><topic>Plasmons</topic><topic>Quantum physics</topic><topic>Quantum tunneling</topic><topic>Resonators</topic><topic>Tunnel junctions</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shu Fen</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yang, Joel K.W.</creatorcontrib><creatorcontrib>Bai, Ping</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><creatorcontrib>Nijhuis, Christian A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shu Fen</au><au>Wu, Lin</au><au>Yang, Joel K.W.</au><au>Bai, Ping</au><au>Bosman, Michel</au><au>Nijhuis, Christian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-03-28</date><risdate>2014</risdate><volume>343</volume><issue>6178</issue><spage>1496</spage><epage>1499</epage><pages>1496-1499</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Quantum tunneling between two plasmonic resonators links nonlinear quantum optics with terahertz nanoelectronics. We describe the direct observation of and control over quantum plasmon resonances at length scales in the range 0.4 to 1.3 nanometers across molecular tunnel junctions made of two plasmonic resonators bridged by self-assembled monolayers (SAMs). The tunnel barrier width and height are controlled by the properties of the molecules. Using electron energy-loss spectroscopy, we directly observe a plasmon mode, the tunneling charge transfer plasmon, whose frequency (ranging from 140 to 245 terahertz) is dependent on the molecules bridging the gaps.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24675958</pmid><doi>10.1126/science.1248797</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-03, Vol.343 (6178), p.1496-1499
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1511394498
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Broadband transmission
Dimers
Electrons
Molecules
Nanoparticles
Nanotechnology
Optics
Plasma spectra
Plasmons
Quantum physics
Quantum tunneling
Resonators
Tunnel junctions
Wave propagation
title Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Plasmon%20Resonances%20Controlled%20by%20Molecular%20Tunnel%20Junctions&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Tan,%20Shu%20Fen&rft.date=2014-03-28&rft.volume=343&rft.issue=6178&rft.spage=1496&rft.epage=1499&rft.pages=1496-1499&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1248797&rft_dat=%3Cjstor_proqu%3E24743532%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510744362&rft_id=info:pmid/24675958&rft_jstor_id=24743532&rfr_iscdi=true