Growth of rutile TiO₂ on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties

In this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2014-04, Vol.6 (8), p.4352-4360
Hauptverfasser: Kong, Junhua, Wei, Yuefan, Zhao, Chenyang, Toh, Meng Yew, Yee, Wu Aik, Zhou, Dan, Phua, Si Lei, Dong, Yuliang, Lu, Xuehong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4360
container_issue 8
container_start_page 4352
container_title Nanoscale
container_volume 6
creator Kong, Junhua
Wei, Yuefan
Zhao, Chenyang
Toh, Meng Yew
Yee, Wu Aik
Zhou, Dan
Phua, Si Lei
Dong, Yuliang
Lu, Xuehong
description In this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO₂ nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO₂ bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO₂ nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO₂ nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO₂-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO₂-130-2 are also superior to those of other rutile TiO₂-based LIB electrodes.
doi_str_mv 10.1039/c3nr04308h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1511392251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1511392251</sourcerecordid><originalsourceid>FETCH-LOGICAL-g248t-4a09327086cb741b8499b35bb781d7c1cd5cca03a2401b23d95119245958f5703</originalsourceid><addsrcrecordid>eNo1kM1KAzEcxIMgtlYvPoDk6KWar_2INylahUIv9bxkk_-6kWxSk121R_uoPolt1dMww48ZGIQuKLmmhMsbzX0kgpOyPUJjRgSZcl6wETpN6ZWQXPKcn6AREznLS0LG6Gsew0ff4tDgOPTWAV7Z5fd2i4PHfQtYB_8OnzgNsVEa9phXPuiNs95ATLe4iaE7ZB7AOEi4Dwcbg0lYebNvsRGDA93HoFvorFYOr2NYQ-wtpDN03CiX4PxPJ-j54X41e5wulvOn2d1i-sJE2U-FIpKzgpS5rgtB61JIWfOsrouSmkJTbTKtFeGKCUJrxo3MKJVMZDIrm6wgfIKufnt3028DpL7qbNLgnPIQhlTRHc8lYxndoZd_6FB3YKp1tJ2Km-r_Nv4DGGputA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511392251</pqid></control><display><type>article</type><title>Growth of rutile TiO₂ on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kong, Junhua ; Wei, Yuefan ; Zhao, Chenyang ; Toh, Meng Yew ; Yee, Wu Aik ; Zhou, Dan ; Phua, Si Lei ; Dong, Yuliang ; Lu, Xuehong</creator><creatorcontrib>Kong, Junhua ; Wei, Yuefan ; Zhao, Chenyang ; Toh, Meng Yew ; Yee, Wu Aik ; Zhou, Dan ; Phua, Si Lei ; Dong, Yuliang ; Lu, Xuehong</creatorcontrib><description>In this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO₂ nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO₂ bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO₂ nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO₂ nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO₂-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO₂-130-2 are also superior to those of other rutile TiO₂-based LIB electrodes.</description><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c3nr04308h</identifier><identifier>PMID: 24626800</identifier><language>eng</language><publisher>England</publisher><subject>Electrochemical Techniques - methods ; Nanotubes - chemistry ; Surface Properties ; Titanium - chemistry</subject><ispartof>Nanoscale, 2014-04, Vol.6 (8), p.4352-4360</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24626800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Junhua</creatorcontrib><creatorcontrib>Wei, Yuefan</creatorcontrib><creatorcontrib>Zhao, Chenyang</creatorcontrib><creatorcontrib>Toh, Meng Yew</creatorcontrib><creatorcontrib>Yee, Wu Aik</creatorcontrib><creatorcontrib>Zhou, Dan</creatorcontrib><creatorcontrib>Phua, Si Lei</creatorcontrib><creatorcontrib>Dong, Yuliang</creatorcontrib><creatorcontrib>Lu, Xuehong</creatorcontrib><title>Growth of rutile TiO₂ on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO₂ nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO₂ bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO₂ nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO₂ nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO₂-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO₂-130-2 are also superior to those of other rutile TiO₂-based LIB electrodes.</description><subject>Electrochemical Techniques - methods</subject><subject>Nanotubes - chemistry</subject><subject>Surface Properties</subject><subject>Titanium - chemistry</subject><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kM1KAzEcxIMgtlYvPoDk6KWar_2INylahUIv9bxkk_-6kWxSk121R_uoPolt1dMww48ZGIQuKLmmhMsbzX0kgpOyPUJjRgSZcl6wETpN6ZWQXPKcn6AREznLS0LG6Gsew0ff4tDgOPTWAV7Z5fd2i4PHfQtYB_8OnzgNsVEa9phXPuiNs95ATLe4iaE7ZB7AOEi4Dwcbg0lYebNvsRGDA93HoFvorFYOr2NYQ-wtpDN03CiX4PxPJ-j54X41e5wulvOn2d1i-sJE2U-FIpKzgpS5rgtB61JIWfOsrouSmkJTbTKtFeGKCUJrxo3MKJVMZDIrm6wgfIKufnt3028DpL7qbNLgnPIQhlTRHc8lYxndoZd_6FB3YKp1tJ2Km-r_Nv4DGGputA</recordid><startdate>20140421</startdate><enddate>20140421</enddate><creator>Kong, Junhua</creator><creator>Wei, Yuefan</creator><creator>Zhao, Chenyang</creator><creator>Toh, Meng Yew</creator><creator>Yee, Wu Aik</creator><creator>Zhou, Dan</creator><creator>Phua, Si Lei</creator><creator>Dong, Yuliang</creator><creator>Lu, Xuehong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140421</creationdate><title>Growth of rutile TiO₂ on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties</title><author>Kong, Junhua ; Wei, Yuefan ; Zhao, Chenyang ; Toh, Meng Yew ; Yee, Wu Aik ; Zhou, Dan ; Phua, Si Lei ; Dong, Yuliang ; Lu, Xuehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g248t-4a09327086cb741b8499b35bb781d7c1cd5cca03a2401b23d95119245958f5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Electrochemical Techniques - methods</topic><topic>Nanotubes - chemistry</topic><topic>Surface Properties</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Junhua</creatorcontrib><creatorcontrib>Wei, Yuefan</creatorcontrib><creatorcontrib>Zhao, Chenyang</creatorcontrib><creatorcontrib>Toh, Meng Yew</creatorcontrib><creatorcontrib>Yee, Wu Aik</creatorcontrib><creatorcontrib>Zhou, Dan</creatorcontrib><creatorcontrib>Phua, Si Lei</creatorcontrib><creatorcontrib>Dong, Yuliang</creatorcontrib><creatorcontrib>Lu, Xuehong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Junhua</au><au>Wei, Yuefan</au><au>Zhao, Chenyang</au><au>Toh, Meng Yew</au><au>Yee, Wu Aik</au><au>Zhou, Dan</au><au>Phua, Si Lei</au><au>Dong, Yuliang</au><au>Lu, Xuehong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of rutile TiO₂ on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2014-04-21</date><risdate>2014</risdate><volume>6</volume><issue>8</issue><spage>4352</spage><epage>4360</epage><pages>4352-4360</pages><eissn>2040-3372</eissn><abstract>In this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO₂ nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO₂ bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO₂ nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO₂ nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO₂-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO₂-130-2 are also superior to those of other rutile TiO₂-based LIB electrodes.</abstract><cop>England</cop><pmid>24626800</pmid><doi>10.1039/c3nr04308h</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2040-3372
ispartof Nanoscale, 2014-04, Vol.6 (8), p.4352-4360
issn 2040-3372
language eng
recordid cdi_proquest_miscellaneous_1511392251
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Electrochemical Techniques - methods
Nanotubes - chemistry
Surface Properties
Titanium - chemistry
title Growth of rutile TiO₂ on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20rutile%20TiO%E2%82%82%20on%20the%20convex%20surface%20of%20nanocylinders:%20from%20nanoneedles%20to%20nanorods%20and%20their%20electrochemical%20properties&rft.jtitle=Nanoscale&rft.au=Kong,%20Junhua&rft.date=2014-04-21&rft.volume=6&rft.issue=8&rft.spage=4352&rft.epage=4360&rft.pages=4352-4360&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c3nr04308h&rft_dat=%3Cproquest_pubme%3E1511392251%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511392251&rft_id=info:pmid/24626800&rfr_iscdi=true