Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions

We report the one-pot synthesis and electrochemical switching mechanism of a family of electrochemically bistable ‘daisy chain’ rotaxane switches based on a derivative of the so-called ‘blue box’ (BB4+) tetracationic cyclophane cyclobis(paraquat-p-phenylene). These mechanically interlocked molecules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Am. Chem. Soc 2014-03, Vol.136 (12), p.4714-4723
Hauptverfasser: Bruns, Carson J, Frasconi, Marco, Iehl, Julien, Hartlieb, Karel J, Schneebeli, Severin T, Cheng, Chuyang, Stupp, Samuel I, Stoddart, J. Fraser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4723
container_issue 12
container_start_page 4714
container_title J. Am. Chem. Soc
container_volume 136
creator Bruns, Carson J
Frasconi, Marco
Iehl, Julien
Hartlieb, Karel J
Schneebeli, Severin T
Cheng, Chuyang
Stupp, Samuel I
Stoddart, J. Fraser
description We report the one-pot synthesis and electrochemical switching mechanism of a family of electrochemically bistable ‘daisy chain’ rotaxane switches based on a derivative of the so-called ‘blue box’ (BB4+) tetracationic cyclophane cyclobis(paraquat-p-phenylene). These mechanically interlocked molecules are prepared by stoppering kinetically the solution-state assemblies of a self-complementary monomer comprising a BB4+ ring appended with viologen (V2+) and 1,5-dioxynaphthalene (DNP) recognition units using click chemistry. Six daisy chains are isolated from a single reaction: two monomers (which are not formally ‘chains’), two dimers, and two trimers, each pair of which contains a cyclic and an acyclic isomer. The products have been characterized in detail by high-field 1H NMR spectroscopy in CD3CNmade possible in large part by the high symmetry of the novel BB4+ functionalityand the energies associated with certain aspects of their dynamics in solution are quantified. Cyclic voltammetry and spectroelectrochemistry have been used to elucidate the electrochemical switching mechanism of the major cyclic daisy chain products, which relies on spin-pairing interactions between V•+ and BB2(•+) radical cations under reductive conditions. These daisy chains are of particular interest as electrochemically addressable molecular switches because, in contrast with more conventional bistable catenanes and rotaxanes, the mechanical movement of the ring between recognition units is accompanied by significant changes in molecular dimensions. Whereas the self-complexed cyclic monomerknown as a [c1]daisy chain or molecular ‘ouroboros’conveys sphincter-like constriction and dilation of its ultramacrocyclic cavity, the cyclic dimer ([c2]daisy chain) expresses muscle-like contraction and expansion along its molecular length.
doi_str_mv 10.1021/ja500675y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1510711104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1510711104</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-494a58fde3fec4545c5b8ccc21afa1024b12821fbbbf0d38e3f656bd6307cca23</originalsourceid><addsrcrecordid>eNpt0MFOGzEQBmALFUFIe-AF0KpSJThs6_Hau8sRhbYgRUJK27M1nvUqjjbrsHYgufEOvCFPUqMETpxmRvr0S_Mzdgr8O3ABPxaoOC8rtT1gI1CC5wpE-YmNOOcir-qyOGYnISzSKUUNR-xYyFchihG7m9nGb7I_jy7SHE1ns2t0YZtN5uj6bOYjbrC3Ibse3IPtM7PNZtg4wu7l6Xm_Zbd9tANSdL4Pn9lhi12wX_ZzzP79-vl3cpNP737fTq6mOUpex1xeSlR129iitSSVVKRMTUQCsMX0kzQgagGtMablTVEnV6rSNGXBKyIUxZh93eX6EJ0O5KKlOfm-txQ1QAl1VSR0vkOrwd-vbYh66QLZrksv-XXQoIBXAMBlohc7SoMPYbCtXg1uicNWA9evJev3kpM928euzdI27_Kt1QS-7QBS0Au_HvpUxQdB_wGpsoN7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510711104</pqid></control><display><type>article</type><title>Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions</title><source>ACS Publications</source><creator>Bruns, Carson J ; Frasconi, Marco ; Iehl, Julien ; Hartlieb, Karel J ; Schneebeli, Severin T ; Cheng, Chuyang ; Stupp, Samuel I ; Stoddart, J. Fraser</creator><creatorcontrib>Bruns, Carson J ; Frasconi, Marco ; Iehl, Julien ; Hartlieb, Karel J ; Schneebeli, Severin T ; Cheng, Chuyang ; Stupp, Samuel I ; Stoddart, J. Fraser ; Energy Frontier Research Centers (EFRC) ; Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><description>We report the one-pot synthesis and electrochemical switching mechanism of a family of electrochemically bistable ‘daisy chain’ rotaxane switches based on a derivative of the so-called ‘blue box’ (BB4+) tetracationic cyclophane cyclobis(paraquat-p-phenylene). These mechanically interlocked molecules are prepared by stoppering kinetically the solution-state assemblies of a self-complementary monomer comprising a BB4+ ring appended with viologen (V2+) and 1,5-dioxynaphthalene (DNP) recognition units using click chemistry. Six daisy chains are isolated from a single reaction: two monomers (which are not formally ‘chains’), two dimers, and two trimers, each pair of which contains a cyclic and an acyclic isomer. The products have been characterized in detail by high-field 1H NMR spectroscopy in CD3CNmade possible in large part by the high symmetry of the novel BB4+ functionalityand the energies associated with certain aspects of their dynamics in solution are quantified. Cyclic voltammetry and spectroelectrochemistry have been used to elucidate the electrochemical switching mechanism of the major cyclic daisy chain products, which relies on spin-pairing interactions between V•+ and BB2(•+) radical cations under reductive conditions. These daisy chains are of particular interest as electrochemically addressable molecular switches because, in contrast with more conventional bistable catenanes and rotaxanes, the mechanical movement of the ring between recognition units is accompanied by significant changes in molecular dimensions. Whereas the self-complexed cyclic monomerknown as a [c1]daisy chain or molecular ‘ouroboros’conveys sphincter-like constriction and dilation of its ultramacrocyclic cavity, the cyclic dimer ([c2]daisy chain) expresses muscle-like contraction and expansion along its molecular length.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja500675y</identifier><identifier>PMID: 24512623</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>J. Am. Chem. Soc, 2014-03, Vol.136 (12), p.4714-4723</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-494a58fde3fec4545c5b8ccc21afa1024b12821fbbbf0d38e3f656bd6307cca23</citedby><cites>FETCH-LOGICAL-a408t-494a58fde3fec4545c5b8ccc21afa1024b12821fbbbf0d38e3f656bd6307cca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja500675y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja500675y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24512623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1161873$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruns, Carson J</creatorcontrib><creatorcontrib>Frasconi, Marco</creatorcontrib><creatorcontrib>Iehl, Julien</creatorcontrib><creatorcontrib>Hartlieb, Karel J</creatorcontrib><creatorcontrib>Schneebeli, Severin T</creatorcontrib><creatorcontrib>Cheng, Chuyang</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Stoddart, J. Fraser</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><title>Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions</title><title>J. Am. Chem. Soc</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report the one-pot synthesis and electrochemical switching mechanism of a family of electrochemically bistable ‘daisy chain’ rotaxane switches based on a derivative of the so-called ‘blue box’ (BB4+) tetracationic cyclophane cyclobis(paraquat-p-phenylene). These mechanically interlocked molecules are prepared by stoppering kinetically the solution-state assemblies of a self-complementary monomer comprising a BB4+ ring appended with viologen (V2+) and 1,5-dioxynaphthalene (DNP) recognition units using click chemistry. Six daisy chains are isolated from a single reaction: two monomers (which are not formally ‘chains’), two dimers, and two trimers, each pair of which contains a cyclic and an acyclic isomer. The products have been characterized in detail by high-field 1H NMR spectroscopy in CD3CNmade possible in large part by the high symmetry of the novel BB4+ functionalityand the energies associated with certain aspects of their dynamics in solution are quantified. Cyclic voltammetry and spectroelectrochemistry have been used to elucidate the electrochemical switching mechanism of the major cyclic daisy chain products, which relies on spin-pairing interactions between V•+ and BB2(•+) radical cations under reductive conditions. These daisy chains are of particular interest as electrochemically addressable molecular switches because, in contrast with more conventional bistable catenanes and rotaxanes, the mechanical movement of the ring between recognition units is accompanied by significant changes in molecular dimensions. Whereas the self-complexed cyclic monomerknown as a [c1]daisy chain or molecular ‘ouroboros’conveys sphincter-like constriction and dilation of its ultramacrocyclic cavity, the cyclic dimer ([c2]daisy chain) expresses muscle-like contraction and expansion along its molecular length.</description><subject>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0MFOGzEQBmALFUFIe-AF0KpSJThs6_Hau8sRhbYgRUJK27M1nvUqjjbrsHYgufEOvCFPUqMETpxmRvr0S_Mzdgr8O3ABPxaoOC8rtT1gI1CC5wpE-YmNOOcir-qyOGYnISzSKUUNR-xYyFchihG7m9nGb7I_jy7SHE1ns2t0YZtN5uj6bOYjbrC3Ibse3IPtM7PNZtg4wu7l6Xm_Zbd9tANSdL4Pn9lhi12wX_ZzzP79-vl3cpNP737fTq6mOUpex1xeSlR129iitSSVVKRMTUQCsMX0kzQgagGtMablTVEnV6rSNGXBKyIUxZh93eX6EJ0O5KKlOfm-txQ1QAl1VSR0vkOrwd-vbYh66QLZrksv-XXQoIBXAMBlohc7SoMPYbCtXg1uicNWA9evJev3kpM928euzdI27_Kt1QS-7QBS0Au_HvpUxQdB_wGpsoN7</recordid><startdate>20140326</startdate><enddate>20140326</enddate><creator>Bruns, Carson J</creator><creator>Frasconi, Marco</creator><creator>Iehl, Julien</creator><creator>Hartlieb, Karel J</creator><creator>Schneebeli, Severin T</creator><creator>Cheng, Chuyang</creator><creator>Stupp, Samuel I</creator><creator>Stoddart, J. Fraser</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140326</creationdate><title>Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions</title><author>Bruns, Carson J ; Frasconi, Marco ; Iehl, Julien ; Hartlieb, Karel J ; Schneebeli, Severin T ; Cheng, Chuyang ; Stupp, Samuel I ; Stoddart, J. Fraser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-494a58fde3fec4545c5b8ccc21afa1024b12821fbbbf0d38e3f656bd6307cca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruns, Carson J</creatorcontrib><creatorcontrib>Frasconi, Marco</creatorcontrib><creatorcontrib>Iehl, Julien</creatorcontrib><creatorcontrib>Hartlieb, Karel J</creatorcontrib><creatorcontrib>Schneebeli, Severin T</creatorcontrib><creatorcontrib>Cheng, Chuyang</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Stoddart, J. Fraser</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>J. Am. Chem. Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruns, Carson J</au><au>Frasconi, Marco</au><au>Iehl, Julien</au><au>Hartlieb, Karel J</au><au>Schneebeli, Severin T</au><au>Cheng, Chuyang</au><au>Stupp, Samuel I</au><au>Stoddart, J. Fraser</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Bio-Inspired Energy Science (CBES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions</atitle><jtitle>J. Am. Chem. Soc</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-03-26</date><risdate>2014</risdate><volume>136</volume><issue>12</issue><spage>4714</spage><epage>4723</epage><pages>4714-4723</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report the one-pot synthesis and electrochemical switching mechanism of a family of electrochemically bistable ‘daisy chain’ rotaxane switches based on a derivative of the so-called ‘blue box’ (BB4+) tetracationic cyclophane cyclobis(paraquat-p-phenylene). These mechanically interlocked molecules are prepared by stoppering kinetically the solution-state assemblies of a self-complementary monomer comprising a BB4+ ring appended with viologen (V2+) and 1,5-dioxynaphthalene (DNP) recognition units using click chemistry. Six daisy chains are isolated from a single reaction: two monomers (which are not formally ‘chains’), two dimers, and two trimers, each pair of which contains a cyclic and an acyclic isomer. The products have been characterized in detail by high-field 1H NMR spectroscopy in CD3CNmade possible in large part by the high symmetry of the novel BB4+ functionalityand the energies associated with certain aspects of their dynamics in solution are quantified. Cyclic voltammetry and spectroelectrochemistry have been used to elucidate the electrochemical switching mechanism of the major cyclic daisy chain products, which relies on spin-pairing interactions between V•+ and BB2(•+) radical cations under reductive conditions. These daisy chains are of particular interest as electrochemically addressable molecular switches because, in contrast with more conventional bistable catenanes and rotaxanes, the mechanical movement of the ring between recognition units is accompanied by significant changes in molecular dimensions. Whereas the self-complexed cyclic monomerknown as a [c1]daisy chain or molecular ‘ouroboros’conveys sphincter-like constriction and dilation of its ultramacrocyclic cavity, the cyclic dimer ([c2]daisy chain) expresses muscle-like contraction and expansion along its molecular length.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24512623</pmid><doi>10.1021/ja500675y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof J. Am. Chem. Soc, 2014-03, Vol.136 (12), p.4714-4723
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1510711104
source ACS Publications
subjects catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)
title Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20Switchable%20Daisy%20Chain%20Rotaxanes%20Driven%20by%20Radical%E2%80%93Radical%20Interactions&rft.jtitle=J.%20Am.%20Chem.%20Soc&rft.au=Bruns,%20Carson%20J&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-03-26&rft.volume=136&rft.issue=12&rft.spage=4714&rft.epage=4723&rft.pages=4714-4723&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja500675y&rft_dat=%3Cproquest_osti_%3E1510711104%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510711104&rft_id=info:pmid/24512623&rfr_iscdi=true