Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant
Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2014-04, Vol.192 (7), p.3259-3268 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3268 |
---|---|
container_issue | 7 |
container_start_page | 3259 |
container_title | The Journal of immunology (1950) |
container_volume | 192 |
creator | Wilson, Nicholas S Duewell, Peter Yang, Becky Li, Yun Marsters, Scot Koernig, Sandra Latz, Eicke Maraskovsky, Eugene Morelli, Adriana Baz Schnurr, Max Ashkenazi, Avi |
description | Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo. |
doi_str_mv | 10.4049/jimmunol.1302011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1510093464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1510093464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</originalsourceid><addsrcrecordid>eNpFkN1LwzAUxYMobk7ffZI8-tJ587G0fRzDj8JkoBN8K0mTYEeTziYV9t9b3aZPl3s553DPD6FrAlMOPL_b1M71vm2mhAEFQk7QmMxmkAgB4hSNAShNSCrSEboIYQMAAig_RyPKBRm2fIxM4W0jnZOhdSbRZmu8Nj5i6TVOav9_KJYJyfC2a3Vfxbr12Bldy2gC_v2hjjscWxw_DC5eF6vn-fqleMdSb_ov6eMlOrOyCebqMCfo7eF-vXhKlqvHYjFfJhWHNCYVyXLKWS444YpDxqRUwlKVgla5tRnMKFfaMqk0t9ZKlQuWVhmwQZwbQdkE3e5zhz8_exNi6epQmaaR3rR9KMlsqJ0zLvgghb206toQOmPLbVc72e1KAuUP3PIItzzAHSw3h_ReDe3_DEea7Bv1IndS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510093464</pqid></control><display><type>article</type><title>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Wilson, Nicholas S ; Duewell, Peter ; Yang, Becky ; Li, Yun ; Marsters, Scot ; Koernig, Sandra ; Latz, Eicke ; Maraskovsky, Eugene ; Morelli, Adriana Baz ; Schnurr, Max ; Ashkenazi, Avi</creator><creatorcontrib>Wilson, Nicholas S ; Duewell, Peter ; Yang, Becky ; Li, Yun ; Marsters, Scot ; Koernig, Sandra ; Latz, Eicke ; Maraskovsky, Eugene ; Morelli, Adriana Baz ; Schnurr, Max ; Ashkenazi, Avi</creatorcontrib><description>Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1302011</identifier><identifier>PMID: 24610009</identifier><language>eng</language><publisher>United States</publisher><subject>Adenosine Triphosphate - immunology ; Adenosine Triphosphate - metabolism ; Adjuvants, Immunologic - pharmacology ; Animals ; Antigen-Presenting Cells - drug effects ; Antigen-Presenting Cells - immunology ; Antigen-Presenting Cells - metabolism ; Blotting, Western ; Cell Survival - drug effects ; Cell Survival - immunology ; Cholesterol - immunology ; Cholesterol - pharmacology ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Drug Combinations ; Humans ; Immunity - drug effects ; Immunity - immunology ; Inflammasomes - drug effects ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Interleukin-18 - immunology ; Interleukin-18 - metabolism ; Interleukin-1beta - immunology ; Interleukin-1beta - metabolism ; Killer Cells, Natural - drug effects ; Killer Cells, Natural - immunology ; Killer Cells, Natural - metabolism ; Lymphocyte Activation - drug effects ; Lymphocyte Activation - immunology ; Lysosomes - drug effects ; Lysosomes - immunology ; Lysosomes - metabolism ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages, Peritoneal - drug effects ; Macrophages, Peritoneal - immunology ; Macrophages, Peritoneal - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Confocal ; Phospholipids - immunology ; Phospholipids - pharmacology ; Receptors, Tumor Necrosis Factor - deficiency ; Receptors, Tumor Necrosis Factor - genetics ; Receptors, Tumor Necrosis Factor - immunology ; Saponins - immunology ; Saponins - pharmacology ; Signal Transduction - drug effects ; Signal Transduction - immunology ; Tumor Necrosis Factor-alpha - deficiency ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - immunology</subject><ispartof>The Journal of immunology (1950), 2014-04, Vol.192 (7), p.3259-3268</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</citedby><cites>FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24610009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Nicholas S</creatorcontrib><creatorcontrib>Duewell, Peter</creatorcontrib><creatorcontrib>Yang, Becky</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Marsters, Scot</creatorcontrib><creatorcontrib>Koernig, Sandra</creatorcontrib><creatorcontrib>Latz, Eicke</creatorcontrib><creatorcontrib>Maraskovsky, Eugene</creatorcontrib><creatorcontrib>Morelli, Adriana Baz</creatorcontrib><creatorcontrib>Schnurr, Max</creatorcontrib><creatorcontrib>Ashkenazi, Avi</creatorcontrib><title>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.</description><subject>Adenosine Triphosphate - immunology</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Animals</subject><subject>Antigen-Presenting Cells - drug effects</subject><subject>Antigen-Presenting Cells - immunology</subject><subject>Antigen-Presenting Cells - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - immunology</subject><subject>Cholesterol - immunology</subject><subject>Cholesterol - pharmacology</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Drug Combinations</subject><subject>Humans</subject><subject>Immunity - drug effects</subject><subject>Immunity - immunology</subject><subject>Inflammasomes - drug effects</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Interleukin-18 - immunology</subject><subject>Interleukin-18 - metabolism</subject><subject>Interleukin-1beta - immunology</subject><subject>Interleukin-1beta - metabolism</subject><subject>Killer Cells, Natural - drug effects</subject><subject>Killer Cells, Natural - immunology</subject><subject>Killer Cells, Natural - metabolism</subject><subject>Lymphocyte Activation - drug effects</subject><subject>Lymphocyte Activation - immunology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - immunology</subject><subject>Lysosomes - metabolism</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages, Peritoneal - drug effects</subject><subject>Macrophages, Peritoneal - immunology</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Confocal</subject><subject>Phospholipids - immunology</subject><subject>Phospholipids - pharmacology</subject><subject>Receptors, Tumor Necrosis Factor - deficiency</subject><subject>Receptors, Tumor Necrosis Factor - genetics</subject><subject>Receptors, Tumor Necrosis Factor - immunology</subject><subject>Saponins - immunology</subject><subject>Saponins - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - immunology</subject><subject>Tumor Necrosis Factor-alpha - deficiency</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkN1LwzAUxYMobk7ffZI8-tJ587G0fRzDj8JkoBN8K0mTYEeTziYV9t9b3aZPl3s553DPD6FrAlMOPL_b1M71vm2mhAEFQk7QmMxmkAgB4hSNAShNSCrSEboIYQMAAig_RyPKBRm2fIxM4W0jnZOhdSbRZmu8Nj5i6TVOav9_KJYJyfC2a3Vfxbr12Bldy2gC_v2hjjscWxw_DC5eF6vn-fqleMdSb_ov6eMlOrOyCebqMCfo7eF-vXhKlqvHYjFfJhWHNCYVyXLKWS444YpDxqRUwlKVgla5tRnMKFfaMqk0t9ZKlQuWVhmwQZwbQdkE3e5zhz8_exNi6epQmaaR3rR9KMlsqJ0zLvgghb206toQOmPLbVc72e1KAuUP3PIItzzAHSw3h_ReDe3_DEea7Bv1IndS</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Wilson, Nicholas S</creator><creator>Duewell, Peter</creator><creator>Yang, Becky</creator><creator>Li, Yun</creator><creator>Marsters, Scot</creator><creator>Koernig, Sandra</creator><creator>Latz, Eicke</creator><creator>Maraskovsky, Eugene</creator><creator>Morelli, Adriana Baz</creator><creator>Schnurr, Max</creator><creator>Ashkenazi, Avi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140401</creationdate><title>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</title><author>Wilson, Nicholas S ; Duewell, Peter ; Yang, Becky ; Li, Yun ; Marsters, Scot ; Koernig, Sandra ; Latz, Eicke ; Maraskovsky, Eugene ; Morelli, Adriana Baz ; Schnurr, Max ; Ashkenazi, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Triphosphate - immunology</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Animals</topic><topic>Antigen-Presenting Cells - drug effects</topic><topic>Antigen-Presenting Cells - immunology</topic><topic>Antigen-Presenting Cells - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - immunology</topic><topic>Cholesterol - immunology</topic><topic>Cholesterol - pharmacology</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Drug Combinations</topic><topic>Humans</topic><topic>Immunity - drug effects</topic><topic>Immunity - immunology</topic><topic>Inflammasomes - drug effects</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Interleukin-18 - immunology</topic><topic>Interleukin-18 - metabolism</topic><topic>Interleukin-1beta - immunology</topic><topic>Interleukin-1beta - metabolism</topic><topic>Killer Cells, Natural - drug effects</topic><topic>Killer Cells, Natural - immunology</topic><topic>Killer Cells, Natural - metabolism</topic><topic>Lymphocyte Activation - drug effects</topic><topic>Lymphocyte Activation - immunology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - immunology</topic><topic>Lysosomes - metabolism</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages, Peritoneal - drug effects</topic><topic>Macrophages, Peritoneal - immunology</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Confocal</topic><topic>Phospholipids - immunology</topic><topic>Phospholipids - pharmacology</topic><topic>Receptors, Tumor Necrosis Factor - deficiency</topic><topic>Receptors, Tumor Necrosis Factor - genetics</topic><topic>Receptors, Tumor Necrosis Factor - immunology</topic><topic>Saponins - immunology</topic><topic>Saponins - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - immunology</topic><topic>Tumor Necrosis Factor-alpha - deficiency</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Nicholas S</creatorcontrib><creatorcontrib>Duewell, Peter</creatorcontrib><creatorcontrib>Yang, Becky</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Marsters, Scot</creatorcontrib><creatorcontrib>Koernig, Sandra</creatorcontrib><creatorcontrib>Latz, Eicke</creatorcontrib><creatorcontrib>Maraskovsky, Eugene</creatorcontrib><creatorcontrib>Morelli, Adriana Baz</creatorcontrib><creatorcontrib>Schnurr, Max</creatorcontrib><creatorcontrib>Ashkenazi, Avi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Nicholas S</au><au>Duewell, Peter</au><au>Yang, Becky</au><au>Li, Yun</au><au>Marsters, Scot</au><au>Koernig, Sandra</au><au>Latz, Eicke</au><au>Maraskovsky, Eugene</au><au>Morelli, Adriana Baz</au><au>Schnurr, Max</au><au>Ashkenazi, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>192</volume><issue>7</issue><spage>3259</spage><epage>3268</epage><pages>3259-3268</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.</abstract><cop>United States</cop><pmid>24610009</pmid><doi>10.4049/jimmunol.1302011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2014-04, Vol.192 (7), p.3259-3268 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_proquest_miscellaneous_1510093464 |
source | MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Adenosine Triphosphate - immunology Adenosine Triphosphate - metabolism Adjuvants, Immunologic - pharmacology Animals Antigen-Presenting Cells - drug effects Antigen-Presenting Cells - immunology Antigen-Presenting Cells - metabolism Blotting, Western Cell Survival - drug effects Cell Survival - immunology Cholesterol - immunology Cholesterol - pharmacology Dendritic Cells - drug effects Dendritic Cells - immunology Dendritic Cells - metabolism Drug Combinations Humans Immunity - drug effects Immunity - immunology Inflammasomes - drug effects Inflammasomes - immunology Inflammasomes - metabolism Interleukin-18 - immunology Interleukin-18 - metabolism Interleukin-1beta - immunology Interleukin-1beta - metabolism Killer Cells, Natural - drug effects Killer Cells, Natural - immunology Killer Cells, Natural - metabolism Lymphocyte Activation - drug effects Lymphocyte Activation - immunology Lysosomes - drug effects Lysosomes - immunology Lysosomes - metabolism Macrophages - drug effects Macrophages - immunology Macrophages - metabolism Macrophages, Peritoneal - drug effects Macrophages, Peritoneal - immunology Macrophages, Peritoneal - metabolism Mice Mice, Inbred C57BL Mice, Knockout Microscopy, Confocal Phospholipids - immunology Phospholipids - pharmacology Receptors, Tumor Necrosis Factor - deficiency Receptors, Tumor Necrosis Factor - genetics Receptors, Tumor Necrosis Factor - immunology Saponins - immunology Saponins - pharmacology Signal Transduction - drug effects Signal Transduction - immunology Tumor Necrosis Factor-alpha - deficiency Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - immunology |
title | Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflammasome-dependent%20and%20-independent%20IL-18%20production%20mediates%20immunity%20to%20the%20ISCOMATRIX%20adjuvant&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Wilson,%20Nicholas%20S&rft.date=2014-04-01&rft.volume=192&rft.issue=7&rft.spage=3259&rft.epage=3268&rft.pages=3259-3268&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1302011&rft_dat=%3Cproquest_cross%3E1510093464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510093464&rft_id=info:pmid/24610009&rfr_iscdi=true |