Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant

Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2014-04, Vol.192 (7), p.3259-3268
Hauptverfasser: Wilson, Nicholas S, Duewell, Peter, Yang, Becky, Li, Yun, Marsters, Scot, Koernig, Sandra, Latz, Eicke, Maraskovsky, Eugene, Morelli, Adriana Baz, Schnurr, Max, Ashkenazi, Avi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3268
container_issue 7
container_start_page 3259
container_title The Journal of immunology (1950)
container_volume 192
creator Wilson, Nicholas S
Duewell, Peter
Yang, Becky
Li, Yun
Marsters, Scot
Koernig, Sandra
Latz, Eicke
Maraskovsky, Eugene
Morelli, Adriana Baz
Schnurr, Max
Ashkenazi, Avi
description Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.
doi_str_mv 10.4049/jimmunol.1302011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1510093464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1510093464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</originalsourceid><addsrcrecordid>eNpFkN1LwzAUxYMobk7ffZI8-tJ587G0fRzDj8JkoBN8K0mTYEeTziYV9t9b3aZPl3s553DPD6FrAlMOPL_b1M71vm2mhAEFQk7QmMxmkAgB4hSNAShNSCrSEboIYQMAAig_RyPKBRm2fIxM4W0jnZOhdSbRZmu8Nj5i6TVOav9_KJYJyfC2a3Vfxbr12Bldy2gC_v2hjjscWxw_DC5eF6vn-fqleMdSb_ov6eMlOrOyCebqMCfo7eF-vXhKlqvHYjFfJhWHNCYVyXLKWS444YpDxqRUwlKVgla5tRnMKFfaMqk0t9ZKlQuWVhmwQZwbQdkE3e5zhz8_exNi6epQmaaR3rR9KMlsqJ0zLvgghb206toQOmPLbVc72e1KAuUP3PIItzzAHSw3h_ReDe3_DEea7Bv1IndS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510093464</pqid></control><display><type>article</type><title>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Wilson, Nicholas S ; Duewell, Peter ; Yang, Becky ; Li, Yun ; Marsters, Scot ; Koernig, Sandra ; Latz, Eicke ; Maraskovsky, Eugene ; Morelli, Adriana Baz ; Schnurr, Max ; Ashkenazi, Avi</creator><creatorcontrib>Wilson, Nicholas S ; Duewell, Peter ; Yang, Becky ; Li, Yun ; Marsters, Scot ; Koernig, Sandra ; Latz, Eicke ; Maraskovsky, Eugene ; Morelli, Adriana Baz ; Schnurr, Max ; Ashkenazi, Avi</creatorcontrib><description>Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1302011</identifier><identifier>PMID: 24610009</identifier><language>eng</language><publisher>United States</publisher><subject>Adenosine Triphosphate - immunology ; Adenosine Triphosphate - metabolism ; Adjuvants, Immunologic - pharmacology ; Animals ; Antigen-Presenting Cells - drug effects ; Antigen-Presenting Cells - immunology ; Antigen-Presenting Cells - metabolism ; Blotting, Western ; Cell Survival - drug effects ; Cell Survival - immunology ; Cholesterol - immunology ; Cholesterol - pharmacology ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Drug Combinations ; Humans ; Immunity - drug effects ; Immunity - immunology ; Inflammasomes - drug effects ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Interleukin-18 - immunology ; Interleukin-18 - metabolism ; Interleukin-1beta - immunology ; Interleukin-1beta - metabolism ; Killer Cells, Natural - drug effects ; Killer Cells, Natural - immunology ; Killer Cells, Natural - metabolism ; Lymphocyte Activation - drug effects ; Lymphocyte Activation - immunology ; Lysosomes - drug effects ; Lysosomes - immunology ; Lysosomes - metabolism ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages, Peritoneal - drug effects ; Macrophages, Peritoneal - immunology ; Macrophages, Peritoneal - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Confocal ; Phospholipids - immunology ; Phospholipids - pharmacology ; Receptors, Tumor Necrosis Factor - deficiency ; Receptors, Tumor Necrosis Factor - genetics ; Receptors, Tumor Necrosis Factor - immunology ; Saponins - immunology ; Saponins - pharmacology ; Signal Transduction - drug effects ; Signal Transduction - immunology ; Tumor Necrosis Factor-alpha - deficiency ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - immunology</subject><ispartof>The Journal of immunology (1950), 2014-04, Vol.192 (7), p.3259-3268</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</citedby><cites>FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24610009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Nicholas S</creatorcontrib><creatorcontrib>Duewell, Peter</creatorcontrib><creatorcontrib>Yang, Becky</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Marsters, Scot</creatorcontrib><creatorcontrib>Koernig, Sandra</creatorcontrib><creatorcontrib>Latz, Eicke</creatorcontrib><creatorcontrib>Maraskovsky, Eugene</creatorcontrib><creatorcontrib>Morelli, Adriana Baz</creatorcontrib><creatorcontrib>Schnurr, Max</creatorcontrib><creatorcontrib>Ashkenazi, Avi</creatorcontrib><title>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.</description><subject>Adenosine Triphosphate - immunology</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Animals</subject><subject>Antigen-Presenting Cells - drug effects</subject><subject>Antigen-Presenting Cells - immunology</subject><subject>Antigen-Presenting Cells - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - immunology</subject><subject>Cholesterol - immunology</subject><subject>Cholesterol - pharmacology</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Drug Combinations</subject><subject>Humans</subject><subject>Immunity - drug effects</subject><subject>Immunity - immunology</subject><subject>Inflammasomes - drug effects</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Interleukin-18 - immunology</subject><subject>Interleukin-18 - metabolism</subject><subject>Interleukin-1beta - immunology</subject><subject>Interleukin-1beta - metabolism</subject><subject>Killer Cells, Natural - drug effects</subject><subject>Killer Cells, Natural - immunology</subject><subject>Killer Cells, Natural - metabolism</subject><subject>Lymphocyte Activation - drug effects</subject><subject>Lymphocyte Activation - immunology</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - immunology</subject><subject>Lysosomes - metabolism</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages, Peritoneal - drug effects</subject><subject>Macrophages, Peritoneal - immunology</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Confocal</subject><subject>Phospholipids - immunology</subject><subject>Phospholipids - pharmacology</subject><subject>Receptors, Tumor Necrosis Factor - deficiency</subject><subject>Receptors, Tumor Necrosis Factor - genetics</subject><subject>Receptors, Tumor Necrosis Factor - immunology</subject><subject>Saponins - immunology</subject><subject>Saponins - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - immunology</subject><subject>Tumor Necrosis Factor-alpha - deficiency</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkN1LwzAUxYMobk7ffZI8-tJ587G0fRzDj8JkoBN8K0mTYEeTziYV9t9b3aZPl3s553DPD6FrAlMOPL_b1M71vm2mhAEFQk7QmMxmkAgB4hSNAShNSCrSEboIYQMAAig_RyPKBRm2fIxM4W0jnZOhdSbRZmu8Nj5i6TVOav9_KJYJyfC2a3Vfxbr12Bldy2gC_v2hjjscWxw_DC5eF6vn-fqleMdSb_ov6eMlOrOyCebqMCfo7eF-vXhKlqvHYjFfJhWHNCYVyXLKWS444YpDxqRUwlKVgla5tRnMKFfaMqk0t9ZKlQuWVhmwQZwbQdkE3e5zhz8_exNi6epQmaaR3rR9KMlsqJ0zLvgghb206toQOmPLbVc72e1KAuUP3PIItzzAHSw3h_ReDe3_DEea7Bv1IndS</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Wilson, Nicholas S</creator><creator>Duewell, Peter</creator><creator>Yang, Becky</creator><creator>Li, Yun</creator><creator>Marsters, Scot</creator><creator>Koernig, Sandra</creator><creator>Latz, Eicke</creator><creator>Maraskovsky, Eugene</creator><creator>Morelli, Adriana Baz</creator><creator>Schnurr, Max</creator><creator>Ashkenazi, Avi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140401</creationdate><title>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</title><author>Wilson, Nicholas S ; Duewell, Peter ; Yang, Becky ; Li, Yun ; Marsters, Scot ; Koernig, Sandra ; Latz, Eicke ; Maraskovsky, Eugene ; Morelli, Adriana Baz ; Schnurr, Max ; Ashkenazi, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-c18924396414b4083aab6f2b70db9ff80524bdf3abd4fffab9637c803b409e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Triphosphate - immunology</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Animals</topic><topic>Antigen-Presenting Cells - drug effects</topic><topic>Antigen-Presenting Cells - immunology</topic><topic>Antigen-Presenting Cells - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - immunology</topic><topic>Cholesterol - immunology</topic><topic>Cholesterol - pharmacology</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Drug Combinations</topic><topic>Humans</topic><topic>Immunity - drug effects</topic><topic>Immunity - immunology</topic><topic>Inflammasomes - drug effects</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Interleukin-18 - immunology</topic><topic>Interleukin-18 - metabolism</topic><topic>Interleukin-1beta - immunology</topic><topic>Interleukin-1beta - metabolism</topic><topic>Killer Cells, Natural - drug effects</topic><topic>Killer Cells, Natural - immunology</topic><topic>Killer Cells, Natural - metabolism</topic><topic>Lymphocyte Activation - drug effects</topic><topic>Lymphocyte Activation - immunology</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - immunology</topic><topic>Lysosomes - metabolism</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages, Peritoneal - drug effects</topic><topic>Macrophages, Peritoneal - immunology</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Confocal</topic><topic>Phospholipids - immunology</topic><topic>Phospholipids - pharmacology</topic><topic>Receptors, Tumor Necrosis Factor - deficiency</topic><topic>Receptors, Tumor Necrosis Factor - genetics</topic><topic>Receptors, Tumor Necrosis Factor - immunology</topic><topic>Saponins - immunology</topic><topic>Saponins - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - immunology</topic><topic>Tumor Necrosis Factor-alpha - deficiency</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Nicholas S</creatorcontrib><creatorcontrib>Duewell, Peter</creatorcontrib><creatorcontrib>Yang, Becky</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Marsters, Scot</creatorcontrib><creatorcontrib>Koernig, Sandra</creatorcontrib><creatorcontrib>Latz, Eicke</creatorcontrib><creatorcontrib>Maraskovsky, Eugene</creatorcontrib><creatorcontrib>Morelli, Adriana Baz</creatorcontrib><creatorcontrib>Schnurr, Max</creatorcontrib><creatorcontrib>Ashkenazi, Avi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Nicholas S</au><au>Duewell, Peter</au><au>Yang, Becky</au><au>Li, Yun</au><au>Marsters, Scot</au><au>Koernig, Sandra</au><au>Latz, Eicke</au><au>Maraskovsky, Eugene</au><au>Morelli, Adriana Baz</au><au>Schnurr, Max</au><au>Ashkenazi, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>192</volume><issue>7</issue><spage>3259</spage><epage>3268</epage><pages>3259-3268</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1β and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.</abstract><cop>United States</cop><pmid>24610009</pmid><doi>10.4049/jimmunol.1302011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1767
ispartof The Journal of immunology (1950), 2014-04, Vol.192 (7), p.3259-3268
issn 0022-1767
1550-6606
language eng
recordid cdi_proquest_miscellaneous_1510093464
source MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects Adenosine Triphosphate - immunology
Adenosine Triphosphate - metabolism
Adjuvants, Immunologic - pharmacology
Animals
Antigen-Presenting Cells - drug effects
Antigen-Presenting Cells - immunology
Antigen-Presenting Cells - metabolism
Blotting, Western
Cell Survival - drug effects
Cell Survival - immunology
Cholesterol - immunology
Cholesterol - pharmacology
Dendritic Cells - drug effects
Dendritic Cells - immunology
Dendritic Cells - metabolism
Drug Combinations
Humans
Immunity - drug effects
Immunity - immunology
Inflammasomes - drug effects
Inflammasomes - immunology
Inflammasomes - metabolism
Interleukin-18 - immunology
Interleukin-18 - metabolism
Interleukin-1beta - immunology
Interleukin-1beta - metabolism
Killer Cells, Natural - drug effects
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
Lymphocyte Activation - drug effects
Lymphocyte Activation - immunology
Lysosomes - drug effects
Lysosomes - immunology
Lysosomes - metabolism
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Macrophages, Peritoneal - drug effects
Macrophages, Peritoneal - immunology
Macrophages, Peritoneal - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microscopy, Confocal
Phospholipids - immunology
Phospholipids - pharmacology
Receptors, Tumor Necrosis Factor - deficiency
Receptors, Tumor Necrosis Factor - genetics
Receptors, Tumor Necrosis Factor - immunology
Saponins - immunology
Saponins - pharmacology
Signal Transduction - drug effects
Signal Transduction - immunology
Tumor Necrosis Factor-alpha - deficiency
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - immunology
title Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflammasome-dependent%20and%20-independent%20IL-18%20production%20mediates%20immunity%20to%20the%20ISCOMATRIX%20adjuvant&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Wilson,%20Nicholas%20S&rft.date=2014-04-01&rft.volume=192&rft.issue=7&rft.spage=3259&rft.epage=3268&rft.pages=3259-3268&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1302011&rft_dat=%3Cproquest_cross%3E1510093464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510093464&rft_id=info:pmid/24610009&rfr_iscdi=true