Mechanical behaviour of electrospun fibre-reinforced hydrogels

Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2014-03, Vol.25 (3), p.681-690
Hauptverfasser: Strange, Daniel G. T., Tonsomboon, Khaow, Oyen, Michelle L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 3
container_start_page 681
container_title Journal of materials science. Materials in medicine
container_volume 25
creator Strange, Daniel G. T.
Tonsomboon, Khaow
Oyen, Michelle L.
description Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.
doi_str_mv 10.1007/s10856-013-5123-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1508759867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1504737477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c8a34126fdd09be506972d1d30ee4aab6504c3dae698a9d966bf9a702191404d3</originalsourceid><addsrcrecordid>eNqN0U1rGzEQBmAREmLHzQ_oJSyEQi5KRytpJV0KJTQf4NJLexZaaTZes951JW_A_75y7SYlEMhJBz0z0sxLyEcG1wxAfU4MtKwoME4lKzndHpEpk4pTobk-JlMwUlEhOUzIWUpLABBGylMyKYUAXSoxJV--o1-4vvWuK2pcuKd2GGMxNAV26DdxSOuxL5q2jkgjtn0zRI-hWGxDHB6xSx_ISeO6hOeHc0Z-3X77eXNP5z_uHm6-zqkXqtxQrx0XrKyaEMDUKKEyqgwscEAUztWVBOF5cFgZ7UwwVVU3xikomWECROAzcrXvu47D7xHTxq7a5LHrXI_DmCyToJU0ulLvoUJxJdSOXr6iyzx9nwf5qxhwyWRWbK98XkeK2Nh1bFcubi0Du8vB7nOwOQe7y8Fuc83FofNYrzA8V_xbfAafDsClvPsmut636cXlfpIbnV25dylf9Y8Y__vim6__Aa29nsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504103515</pqid></control><display><type>article</type><title>Mechanical behaviour of electrospun fibre-reinforced hydrogels</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Strange, Daniel G. T. ; Tonsomboon, Khaow ; Oyen, Michelle L.</creator><creatorcontrib>Strange, Daniel G. T. ; Tonsomboon, Khaow ; Oyen, Michelle L.</creatorcontrib><description>Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-013-5123-y</identifier><identifier>PMID: 24408274</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alginates - chemistry ; Biological and medical sciences ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Biomimetic Materials - chemical synthesis ; Biomimetics ; Ceramics ; Chemistry and Materials Science ; Composites ; Compressive Strength ; Elastic Modulus ; Electrochemistry - methods ; Glass ; Glucuronic Acid - chemistry ; Hardness ; Hexuronic Acids - chemistry ; Hydrogels ; Hydrogels - chemistry ; Materials Science ; Materials Testing ; Medical sciences ; Natural Materials ; Polyesters - chemistry ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Rotation ; Stress, Mechanical ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tensile Strength ; Thin Films ; Tissue engineering</subject><ispartof>Journal of materials science. Materials in medicine, 2014-03, Vol.25 (3), p.681-690</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c8a34126fdd09be506972d1d30ee4aab6504c3dae698a9d966bf9a702191404d3</citedby><cites>FETCH-LOGICAL-c472t-c8a34126fdd09be506972d1d30ee4aab6504c3dae698a9d966bf9a702191404d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-013-5123-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-013-5123-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28565398$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24408274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strange, Daniel G. T.</creatorcontrib><creatorcontrib>Tonsomboon, Khaow</creatorcontrib><creatorcontrib>Oyen, Michelle L.</creatorcontrib><title>Mechanical behaviour of electrospun fibre-reinforced hydrogels</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.</description><subject>Alginates - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetics</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compressive Strength</subject><subject>Elastic Modulus</subject><subject>Electrochemistry - methods</subject><subject>Glass</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hardness</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Natural Materials</subject><subject>Polyesters - chemistry</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Rotation</subject><subject>Stress, Mechanical</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tensile Strength</subject><subject>Thin Films</subject><subject>Tissue engineering</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0U1rGzEQBmAREmLHzQ_oJSyEQi5KRytpJV0KJTQf4NJLexZaaTZes951JW_A_75y7SYlEMhJBz0z0sxLyEcG1wxAfU4MtKwoME4lKzndHpEpk4pTobk-JlMwUlEhOUzIWUpLABBGylMyKYUAXSoxJV--o1-4vvWuK2pcuKd2GGMxNAV26DdxSOuxL5q2jkgjtn0zRI-hWGxDHB6xSx_ISeO6hOeHc0Z-3X77eXNP5z_uHm6-zqkXqtxQrx0XrKyaEMDUKKEyqgwscEAUztWVBOF5cFgZ7UwwVVU3xikomWECROAzcrXvu47D7xHTxq7a5LHrXI_DmCyToJU0ulLvoUJxJdSOXr6iyzx9nwf5qxhwyWRWbK98XkeK2Nh1bFcubi0Du8vB7nOwOQe7y8Fuc83FofNYrzA8V_xbfAafDsClvPsmut636cXlfpIbnV25dylf9Y8Y__vim6__Aa29nsQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Strange, Daniel G. T.</creator><creator>Tonsomboon, Khaow</creator><creator>Oyen, Michelle L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20140301</creationdate><title>Mechanical behaviour of electrospun fibre-reinforced hydrogels</title><author>Strange, Daniel G. T. ; Tonsomboon, Khaow ; Oyen, Michelle L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c8a34126fdd09be506972d1d30ee4aab6504c3dae698a9d966bf9a702191404d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alginates - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetics</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compressive Strength</topic><topic>Elastic Modulus</topic><topic>Electrochemistry - methods</topic><topic>Glass</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hardness</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Natural Materials</topic><topic>Polyesters - chemistry</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Rotation</topic><topic>Stress, Mechanical</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tensile Strength</topic><topic>Thin Films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strange, Daniel G. T.</creatorcontrib><creatorcontrib>Tonsomboon, Khaow</creatorcontrib><creatorcontrib>Oyen, Michelle L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strange, Daniel G. T.</au><au>Tonsomboon, Khaow</au><au>Oyen, Michelle L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behaviour of electrospun fibre-reinforced hydrogels</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>25</volume><issue>3</issue><spage>681</spage><epage>690</epage><pages>681-690</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Mechanically robust and biomimicking scaffolds are needed for structural engineering of tissues such as the intervertebral disc, which are prone to failure and incapable of natural healing. Here, the formation of thick, randomly aligned polycaprolactone electrospun fibre structures infiltrated with alginate is reported. The composites are characterised using both indentation and tensile testing and demonstrate substantially different tensile and compressive moduli. The composites are mechanically robust and exhibit large strains-to-failure, exhibiting toughening mechanisms observed in other composite material systems. The method presented here provides a way to create large-scale biomimetic scaffolds that more closely mimic the composite structure of natural tissue, with tuneable tensile and compressive properties via the fibre and matrix phases, respectively.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24408274</pmid><doi>10.1007/s10856-013-5123-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2014-03, Vol.25 (3), p.681-690
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_1508759867
source MEDLINE; SpringerLink Journals
subjects Alginates - chemistry
Biological and medical sciences
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Biomimetic Materials - chemical synthesis
Biomimetics
Ceramics
Chemistry and Materials Science
Composites
Compressive Strength
Elastic Modulus
Electrochemistry - methods
Glass
Glucuronic Acid - chemistry
Hardness
Hexuronic Acids - chemistry
Hydrogels
Hydrogels - chemistry
Materials Science
Materials Testing
Medical sciences
Natural Materials
Polyesters - chemistry
Polymer Sciences
Regenerative Medicine/Tissue Engineering
Rotation
Stress, Mechanical
Surfaces and Interfaces
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tensile Strength
Thin Films
Tissue engineering
title Mechanical behaviour of electrospun fibre-reinforced hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behaviour%20of%20electrospun%20fibre-reinforced%20hydrogels&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Strange,%20Daniel%20G.%20T.&rft.date=2014-03-01&rft.volume=25&rft.issue=3&rft.spage=681&rft.epage=690&rft.pages=681-690&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-013-5123-y&rft_dat=%3Cproquest_cross%3E1504737477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504103515&rft_id=info:pmid/24408274&rfr_iscdi=true