ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES

We establish asymptotic normality of weighted sums of linear processes with general triangular array weights and when the innovations in the linear process are martingale differences. The results are obtained under minimal conditions on the weights and innovations. We also obtain weak convergence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2014-02, Vol.30 (1), p.252-284
Hauptverfasser: Abadir, Karim M., Distaso, Walter, Giraitis, Liudas, Koul, Hira L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 252
container_title Econometric theory
container_volume 30
creator Abadir, Karim M.
Distaso, Walter
Giraitis, Liudas
Koul, Hira L.
description We establish asymptotic normality of weighted sums of linear processes with general triangular array weights and when the innovations in the linear process are martingale differences. The results are obtained under minimal conditions on the weights and innovations. We also obtain weak convergence of weighted partial sum processes. The results are applicable to linear processes that have short or long memory or exhibit seasonal long memory behavior. In particular, they are applicable to GARCH and ARCH(∞) models and to their squares. They are also useful in deriving asymptotic normality of kernel-type estimators of a nonparametric regression function with short or long memory moving average errors.
doi_str_mv 10.1017/S0266466613000182
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1508438120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466613000182</cupid><jstor_id>24534510</jstor_id><sourcerecordid>24534510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-52d13972b2d9da9a35fd2043cbff89a95b51a382a726f5539dd17fb9269bf1873</originalsourceid><addsrcrecordid>eNp1kE1Lw0AYhBdRsFZ_gAch4MVLdL836y3EtA2kTUlSpKew-VhpaRvdbQ_-exNaRBRP72GemXkZAG4RfEQQiacMYs4p5xwRCCHy8BkYIMqlSwmH52DQy26vX4Ira9cdgqUgA_DsZ8vpPE_yKHBmSTr14yhfOqMkdV7DaDzJwxcnW0wzJxk5cTQL_dSZp0kQZlmYXYMLrTa2uTndIViMwjyYuHEyjgI_diuGxd5luEZEClziWtZKKsJ0jSElVam1J5VkJUOKeFgJzDVjRNY1ErqUmMtSI0-QIXg45r6b9uPQ2H2xXdmq2WzUrmkPtkAMepR4CMMOvf-FrtuD2XXf9ZQQnBNGOwodqcq01ppGF-9mtVXms0Cw6Ncs_qzZee6OnrXdt-bbgCkjlKG-mZwy1bY0q_qt-VH9b-oXhRJ4cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507766354</pqid></control><display><type>article</type><title>ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES</title><source>Cambridge Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Abadir, Karim M. ; Distaso, Walter ; Giraitis, Liudas ; Koul, Hira L.</creator><creatorcontrib>Abadir, Karim M. ; Distaso, Walter ; Giraitis, Liudas ; Koul, Hira L.</creatorcontrib><description>We establish asymptotic normality of weighted sums of linear processes with general triangular array weights and when the innovations in the linear process are martingale differences. The results are obtained under minimal conditions on the weights and innovations. We also obtain weak convergence of weighted partial sum processes. The results are applicable to linear processes that have short or long memory or exhibit seasonal long memory behavior. In particular, they are applicable to GARCH and ARCH(∞) models and to their squares. They are also useful in deriving asymptotic normality of kernel-type estimators of a nonparametric regression function with short or long memory moving average errors.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466613000182</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Approximation ; Brownian motion ; Cointegration ; Covariance ; Decomposition ; Density estimation ; Econometric models ; Econometrics ; Economic models ; Economic theory ; Ergodic theory ; Estimators ; Fourier transforms ; GARCH models ; Linear models ; Martingales ; Mathematics ; Memory ; Normal distribution ; Partial sums ; Random variables ; Regression analysis ; Stationary processes ; Studies ; Time series ; Unit root ; Vector-autoregressive models</subject><ispartof>Econometric theory, 2014-02, Vol.30 (1), p.252-284</ispartof><rights>Copyright © Cambridge University Press 2013</rights><rights>Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-52d13972b2d9da9a35fd2043cbff89a95b51a382a726f5539dd17fb9269bf1873</citedby><cites>FETCH-LOGICAL-c527t-52d13972b2d9da9a35fd2043cbff89a95b51a382a726f5539dd17fb9269bf1873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24534510$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466613000182/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,27923,27924,55627,58016,58249</link.rule.ids></links><search><creatorcontrib>Abadir, Karim M.</creatorcontrib><creatorcontrib>Distaso, Walter</creatorcontrib><creatorcontrib>Giraitis, Liudas</creatorcontrib><creatorcontrib>Koul, Hira L.</creatorcontrib><title>ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>We establish asymptotic normality of weighted sums of linear processes with general triangular array weights and when the innovations in the linear process are martingale differences. The results are obtained under minimal conditions on the weights and innovations. We also obtain weak convergence of weighted partial sum processes. The results are applicable to linear processes that have short or long memory or exhibit seasonal long memory behavior. In particular, they are applicable to GARCH and ARCH(∞) models and to their squares. They are also useful in deriving asymptotic normality of kernel-type estimators of a nonparametric regression function with short or long memory moving average errors.</description><subject>Approximation</subject><subject>Brownian motion</subject><subject>Cointegration</subject><subject>Covariance</subject><subject>Decomposition</subject><subject>Density estimation</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Ergodic theory</subject><subject>Estimators</subject><subject>Fourier transforms</subject><subject>GARCH models</subject><subject>Linear models</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Memory</subject><subject>Normal distribution</subject><subject>Partial sums</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Stationary processes</subject><subject>Studies</subject><subject>Time series</subject><subject>Unit root</subject><subject>Vector-autoregressive models</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AYhBdRsFZ_gAch4MVLdL836y3EtA2kTUlSpKew-VhpaRvdbQ_-exNaRBRP72GemXkZAG4RfEQQiacMYs4p5xwRCCHy8BkYIMqlSwmH52DQy26vX4Ira9cdgqUgA_DsZ8vpPE_yKHBmSTr14yhfOqMkdV7DaDzJwxcnW0wzJxk5cTQL_dSZp0kQZlmYXYMLrTa2uTndIViMwjyYuHEyjgI_diuGxd5luEZEClziWtZKKsJ0jSElVam1J5VkJUOKeFgJzDVjRNY1ErqUmMtSI0-QIXg45r6b9uPQ2H2xXdmq2WzUrmkPtkAMepR4CMMOvf-FrtuD2XXf9ZQQnBNGOwodqcq01ppGF-9mtVXms0Cw6Ncs_qzZee6OnrXdt-bbgCkjlKG-mZwy1bY0q_qt-VH9b-oXhRJ4cg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Abadir, Karim M.</creator><creator>Distaso, Walter</creator><creator>Giraitis, Liudas</creator><creator>Koul, Hira L.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES</title><author>Abadir, Karim M. ; Distaso, Walter ; Giraitis, Liudas ; Koul, Hira L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-52d13972b2d9da9a35fd2043cbff89a95b51a382a726f5539dd17fb9269bf1873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Brownian motion</topic><topic>Cointegration</topic><topic>Covariance</topic><topic>Decomposition</topic><topic>Density estimation</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Ergodic theory</topic><topic>Estimators</topic><topic>Fourier transforms</topic><topic>GARCH models</topic><topic>Linear models</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Memory</topic><topic>Normal distribution</topic><topic>Partial sums</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Stationary processes</topic><topic>Studies</topic><topic>Time series</topic><topic>Unit root</topic><topic>Vector-autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abadir, Karim M.</creatorcontrib><creatorcontrib>Distaso, Walter</creatorcontrib><creatorcontrib>Giraitis, Liudas</creatorcontrib><creatorcontrib>Koul, Hira L.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadir, Karim M.</au><au>Distaso, Walter</au><au>Giraitis, Liudas</au><au>Koul, Hira L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>30</volume><issue>1</issue><spage>252</spage><epage>284</epage><pages>252-284</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>We establish asymptotic normality of weighted sums of linear processes with general triangular array weights and when the innovations in the linear process are martingale differences. The results are obtained under minimal conditions on the weights and innovations. We also obtain weak convergence of weighted partial sum processes. The results are applicable to linear processes that have short or long memory or exhibit seasonal long memory behavior. In particular, they are applicable to GARCH and ARCH(∞) models and to their squares. They are also useful in deriving asymptotic normality of kernel-type estimators of a nonparametric regression function with short or long memory moving average errors.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466613000182</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2014-02, Vol.30 (1), p.252-284
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_1508438120
source Cambridge Journals; JSTOR Archive Collection A-Z Listing
subjects Approximation
Brownian motion
Cointegration
Covariance
Decomposition
Density estimation
Econometric models
Econometrics
Economic models
Economic theory
Ergodic theory
Estimators
Fourier transforms
GARCH models
Linear models
Martingales
Mathematics
Memory
Normal distribution
Partial sums
Random variables
Regression analysis
Stationary processes
Studies
Time series
Unit root
Vector-autoregressive models
title ASYMPTOTIC NORMALITY FOR WEIGHTED SUMS OF LINEAR PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20NORMALITY%20FOR%20WEIGHTED%20SUMS%20OF%20LINEAR%20PROCESSES&rft.jtitle=Econometric%20theory&rft.au=Abadir,%20Karim%20M.&rft.date=2014-02-01&rft.volume=30&rft.issue=1&rft.spage=252&rft.epage=284&rft.pages=252-284&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466613000182&rft_dat=%3Cjstor_proqu%3E24534510%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507766354&rft_id=info:pmid/&rft_cupid=10_1017_S0266466613000182&rft_jstor_id=24534510&rfr_iscdi=true