amphibian skin‐associated microbiome across species, space and life history stages

Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2014-03, Vol.23 (6), p.1238-1250
Hauptverfasser: Kueneman, Jordan G, Parfrey, Laura Wegener, Woodhams, Douglas C, Archer, Holly M, Knight, Rob, McKenzie, Valerie J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 6
container_start_page 1238
container_title Molecular ecology
container_volume 23
creator Kueneman, Jordan G
Parfrey, Laura Wegener
Woodhams, Douglas C
Archer, Holly M
Knight, Rob
McKenzie, Valerie J
description Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.
doi_str_mv 10.1111/mec.12510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1508425842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508425842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</originalsourceid><addsrcrecordid>eNp1kN9OFDEUhxuCgRW94AVgEm40ceD0tJ12LsmKaLLqBUsw3jSdTgcK82dpd6N75yP4jD6JXQa4MLFJ09PmO7-cfoTsUzimaZ10zh5TFBS2yISyQuRY8m_bZAJlgTkFxXbJyxhvAShDIXbILnIqacnLCZmbbnHjK2_6LN75_s-v3ybGwXqzdHXWeRuGyg-dy0yqYsziwlnv4rtUGJte-zprfeOyGx-XQ1hncWmuXXxFXjSmje7147lHLj-czacf89nX80_T01luuaKQs8oIXksjahQSC4kVoqI1NqKUkkNpVWE457aulC2ESzfgjLFaAQWUhWJ75M2YuwjD_crFpe58tK5tTe-GVdRUgOIo0k7o0T_o7bAKfZpuQ0lZUIGQqLcj9fDb4Bq9CL4zYa0p6I1qnVTrB9WJPXhMXFWdq5_JJ7cJOBmBH7516_8n6c9n06fIfOxINt3P5w4T7nQhmRT66su5nvGr7xc4f683_OHIN2bQ5jr4qC8vECgHAKVQMfYXL8-fEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507761520</pqid></control><display><type>article</type><title>amphibian skin‐associated microbiome across species, space and life history stages</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kueneman, Jordan G ; Parfrey, Laura Wegener ; Woodhams, Douglas C ; Archer, Holly M ; Knight, Rob ; McKenzie, Valerie J</creator><creatorcontrib>Kueneman, Jordan G ; Parfrey, Laura Wegener ; Woodhams, Douglas C ; Archer, Holly M ; Knight, Rob ; McKenzie, Valerie J</creatorcontrib><description>Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12510</identifier><identifier>PMID: 24171949</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Actinobacteria ; alpha-Proteobacteria ; amphibians ; Amphibians - microbiology ; Animals ; bacteria ; Bacteria - classification ; Bacteria - genetics ; bacterial communities ; Biodiversity ; California ; community structure ; disease resistance ; DNA, Bacterial - genetics ; environmental factors ; Evolutionary biology ; gamma-Proteobacteria ; genes ; Lakes ; Larva - microbiology ; Lithobates catesbeianus ; metamorphosis ; Microbiology ; microbiome ; Microbiota ; pathogens ; phenotype ; Rana ; Ranidae - microbiology ; Reptiles &amp; amphibians ; ribosomal RNA ; RNA, Ribosomal, 16S - genetics ; Sequence Analysis, DNA ; Skin ; Skin - microbiology ; Soil Microbiology ; Species Specificity ; Sphingobacteria ; symbionts ; Symbiosis ; tadpoles ; Water Microbiology</subject><ispartof>Molecular ecology, 2014-03, Vol.23 (6), p.1238-1250</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</citedby><cites>FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.12510$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.12510$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24171949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kueneman, Jordan G</creatorcontrib><creatorcontrib>Parfrey, Laura Wegener</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><creatorcontrib>Archer, Holly M</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>McKenzie, Valerie J</creatorcontrib><title>amphibian skin‐associated microbiome across species, space and life history stages</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.</description><subject>Actinobacteria</subject><subject>alpha-Proteobacteria</subject><subject>amphibians</subject><subject>Amphibians - microbiology</subject><subject>Animals</subject><subject>bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>bacterial communities</subject><subject>Biodiversity</subject><subject>California</subject><subject>community structure</subject><subject>disease resistance</subject><subject>DNA, Bacterial - genetics</subject><subject>environmental factors</subject><subject>Evolutionary biology</subject><subject>gamma-Proteobacteria</subject><subject>genes</subject><subject>Lakes</subject><subject>Larva - microbiology</subject><subject>Lithobates catesbeianus</subject><subject>metamorphosis</subject><subject>Microbiology</subject><subject>microbiome</subject><subject>Microbiota</subject><subject>pathogens</subject><subject>phenotype</subject><subject>Rana</subject><subject>Ranidae - microbiology</subject><subject>Reptiles &amp; amphibians</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Skin</subject><subject>Skin - microbiology</subject><subject>Soil Microbiology</subject><subject>Species Specificity</subject><subject>Sphingobacteria</subject><subject>symbionts</subject><subject>Symbiosis</subject><subject>tadpoles</subject><subject>Water Microbiology</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN9OFDEUhxuCgRW94AVgEm40ceD0tJ12LsmKaLLqBUsw3jSdTgcK82dpd6N75yP4jD6JXQa4MLFJ09PmO7-cfoTsUzimaZ10zh5TFBS2yISyQuRY8m_bZAJlgTkFxXbJyxhvAShDIXbILnIqacnLCZmbbnHjK2_6LN75_s-v3ybGwXqzdHXWeRuGyg-dy0yqYsziwlnv4rtUGJte-zprfeOyGx-XQ1hncWmuXXxFXjSmje7147lHLj-czacf89nX80_T01luuaKQs8oIXksjahQSC4kVoqI1NqKUkkNpVWE457aulC2ESzfgjLFaAQWUhWJ75M2YuwjD_crFpe58tK5tTe-GVdRUgOIo0k7o0T_o7bAKfZpuQ0lZUIGQqLcj9fDb4Bq9CL4zYa0p6I1qnVTrB9WJPXhMXFWdq5_JJ7cJOBmBH7516_8n6c9n06fIfOxINt3P5w4T7nQhmRT66su5nvGr7xc4f683_OHIN2bQ5jr4qC8vECgHAKVQMfYXL8-fEg</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Kueneman, Jordan G</creator><creator>Parfrey, Laura Wegener</creator><creator>Woodhams, Douglas C</creator><creator>Archer, Holly M</creator><creator>Knight, Rob</creator><creator>McKenzie, Valerie J</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>amphibian skin‐associated microbiome across species, space and life history stages</title><author>Kueneman, Jordan G ; Parfrey, Laura Wegener ; Woodhams, Douglas C ; Archer, Holly M ; Knight, Rob ; McKenzie, Valerie J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actinobacteria</topic><topic>alpha-Proteobacteria</topic><topic>amphibians</topic><topic>Amphibians - microbiology</topic><topic>Animals</topic><topic>bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>bacterial communities</topic><topic>Biodiversity</topic><topic>California</topic><topic>community structure</topic><topic>disease resistance</topic><topic>DNA, Bacterial - genetics</topic><topic>environmental factors</topic><topic>Evolutionary biology</topic><topic>gamma-Proteobacteria</topic><topic>genes</topic><topic>Lakes</topic><topic>Larva - microbiology</topic><topic>Lithobates catesbeianus</topic><topic>metamorphosis</topic><topic>Microbiology</topic><topic>microbiome</topic><topic>Microbiota</topic><topic>pathogens</topic><topic>phenotype</topic><topic>Rana</topic><topic>Ranidae - microbiology</topic><topic>Reptiles &amp; amphibians</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Skin</topic><topic>Skin - microbiology</topic><topic>Soil Microbiology</topic><topic>Species Specificity</topic><topic>Sphingobacteria</topic><topic>symbionts</topic><topic>Symbiosis</topic><topic>tadpoles</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kueneman, Jordan G</creatorcontrib><creatorcontrib>Parfrey, Laura Wegener</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><creatorcontrib>Archer, Holly M</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>McKenzie, Valerie J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kueneman, Jordan G</au><au>Parfrey, Laura Wegener</au><au>Woodhams, Douglas C</au><au>Archer, Holly M</au><au>Knight, Rob</au><au>McKenzie, Valerie J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>amphibian skin‐associated microbiome across species, space and life history stages</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2014-03</date><risdate>2014</risdate><volume>23</volume><issue>6</issue><spage>1238</spage><epage>1250</epage><pages>1238-1250</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24171949</pmid><doi>10.1111/mec.12510</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2014-03, Vol.23 (6), p.1238-1250
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_1508425842
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Actinobacteria
alpha-Proteobacteria
amphibians
Amphibians - microbiology
Animals
bacteria
Bacteria - classification
Bacteria - genetics
bacterial communities
Biodiversity
California
community structure
disease resistance
DNA, Bacterial - genetics
environmental factors
Evolutionary biology
gamma-Proteobacteria
genes
Lakes
Larva - microbiology
Lithobates catesbeianus
metamorphosis
Microbiology
microbiome
Microbiota
pathogens
phenotype
Rana
Ranidae - microbiology
Reptiles & amphibians
ribosomal RNA
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
Skin
Skin - microbiology
Soil Microbiology
Species Specificity
Sphingobacteria
symbionts
Symbiosis
tadpoles
Water Microbiology
title amphibian skin‐associated microbiome across species, space and life history stages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=amphibian%20skin%E2%80%90associated%20microbiome%20across%20species,%20space%20and%20life%20history%20stages&rft.jtitle=Molecular%20ecology&rft.au=Kueneman,%20Jordan%20G&rft.date=2014-03&rft.volume=23&rft.issue=6&rft.spage=1238&rft.epage=1250&rft.pages=1238-1250&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12510&rft_dat=%3Cproquest_cross%3E1508425842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507761520&rft_id=info:pmid/24171949&rfr_iscdi=true