amphibian skin‐associated microbiome across species, space and life history stages
Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of th...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2014-03, Vol.23 (6), p.1238-1250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 6 |
container_start_page | 1238 |
container_title | Molecular ecology |
container_volume | 23 |
creator | Kueneman, Jordan G Parfrey, Laura Wegener Woodhams, Douglas C Archer, Holly M Knight, Rob McKenzie, Valerie J |
description | Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance. |
doi_str_mv | 10.1111/mec.12510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1508425842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508425842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</originalsourceid><addsrcrecordid>eNp1kN9OFDEUhxuCgRW94AVgEm40ceD0tJ12LsmKaLLqBUsw3jSdTgcK82dpd6N75yP4jD6JXQa4MLFJ09PmO7-cfoTsUzimaZ10zh5TFBS2yISyQuRY8m_bZAJlgTkFxXbJyxhvAShDIXbILnIqacnLCZmbbnHjK2_6LN75_s-v3ybGwXqzdHXWeRuGyg-dy0yqYsziwlnv4rtUGJte-zprfeOyGx-XQ1hncWmuXXxFXjSmje7147lHLj-czacf89nX80_T01luuaKQs8oIXksjahQSC4kVoqI1NqKUkkNpVWE457aulC2ESzfgjLFaAQWUhWJ75M2YuwjD_crFpe58tK5tTe-GVdRUgOIo0k7o0T_o7bAKfZpuQ0lZUIGQqLcj9fDb4Bq9CL4zYa0p6I1qnVTrB9WJPXhMXFWdq5_JJ7cJOBmBH7516_8n6c9n06fIfOxINt3P5w4T7nQhmRT66su5nvGr7xc4f683_OHIN2bQ5jr4qC8vECgHAKVQMfYXL8-fEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507761520</pqid></control><display><type>article</type><title>amphibian skin‐associated microbiome across species, space and life history stages</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kueneman, Jordan G ; Parfrey, Laura Wegener ; Woodhams, Douglas C ; Archer, Holly M ; Knight, Rob ; McKenzie, Valerie J</creator><creatorcontrib>Kueneman, Jordan G ; Parfrey, Laura Wegener ; Woodhams, Douglas C ; Archer, Holly M ; Knight, Rob ; McKenzie, Valerie J</creatorcontrib><description>Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12510</identifier><identifier>PMID: 24171949</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Actinobacteria ; alpha-Proteobacteria ; amphibians ; Amphibians - microbiology ; Animals ; bacteria ; Bacteria - classification ; Bacteria - genetics ; bacterial communities ; Biodiversity ; California ; community structure ; disease resistance ; DNA, Bacterial - genetics ; environmental factors ; Evolutionary biology ; gamma-Proteobacteria ; genes ; Lakes ; Larva - microbiology ; Lithobates catesbeianus ; metamorphosis ; Microbiology ; microbiome ; Microbiota ; pathogens ; phenotype ; Rana ; Ranidae - microbiology ; Reptiles & amphibians ; ribosomal RNA ; RNA, Ribosomal, 16S - genetics ; Sequence Analysis, DNA ; Skin ; Skin - microbiology ; Soil Microbiology ; Species Specificity ; Sphingobacteria ; symbionts ; Symbiosis ; tadpoles ; Water Microbiology</subject><ispartof>Molecular ecology, 2014-03, Vol.23 (6), p.1238-1250</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</citedby><cites>FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.12510$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.12510$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24171949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kueneman, Jordan G</creatorcontrib><creatorcontrib>Parfrey, Laura Wegener</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><creatorcontrib>Archer, Holly M</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>McKenzie, Valerie J</creatorcontrib><title>amphibian skin‐associated microbiome across species, space and life history stages</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.</description><subject>Actinobacteria</subject><subject>alpha-Proteobacteria</subject><subject>amphibians</subject><subject>Amphibians - microbiology</subject><subject>Animals</subject><subject>bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>bacterial communities</subject><subject>Biodiversity</subject><subject>California</subject><subject>community structure</subject><subject>disease resistance</subject><subject>DNA, Bacterial - genetics</subject><subject>environmental factors</subject><subject>Evolutionary biology</subject><subject>gamma-Proteobacteria</subject><subject>genes</subject><subject>Lakes</subject><subject>Larva - microbiology</subject><subject>Lithobates catesbeianus</subject><subject>metamorphosis</subject><subject>Microbiology</subject><subject>microbiome</subject><subject>Microbiota</subject><subject>pathogens</subject><subject>phenotype</subject><subject>Rana</subject><subject>Ranidae - microbiology</subject><subject>Reptiles & amphibians</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Skin</subject><subject>Skin - microbiology</subject><subject>Soil Microbiology</subject><subject>Species Specificity</subject><subject>Sphingobacteria</subject><subject>symbionts</subject><subject>Symbiosis</subject><subject>tadpoles</subject><subject>Water Microbiology</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN9OFDEUhxuCgRW94AVgEm40ceD0tJ12LsmKaLLqBUsw3jSdTgcK82dpd6N75yP4jD6JXQa4MLFJ09PmO7-cfoTsUzimaZ10zh5TFBS2yISyQuRY8m_bZAJlgTkFxXbJyxhvAShDIXbILnIqacnLCZmbbnHjK2_6LN75_s-v3ybGwXqzdHXWeRuGyg-dy0yqYsziwlnv4rtUGJte-zprfeOyGx-XQ1hncWmuXXxFXjSmje7147lHLj-czacf89nX80_T01luuaKQs8oIXksjahQSC4kVoqI1NqKUkkNpVWE457aulC2ESzfgjLFaAQWUhWJ75M2YuwjD_crFpe58tK5tTe-GVdRUgOIo0k7o0T_o7bAKfZpuQ0lZUIGQqLcj9fDb4Bq9CL4zYa0p6I1qnVTrB9WJPXhMXFWdq5_JJ7cJOBmBH7516_8n6c9n06fIfOxINt3P5w4T7nQhmRT66su5nvGr7xc4f683_OHIN2bQ5jr4qC8vECgHAKVQMfYXL8-fEg</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Kueneman, Jordan G</creator><creator>Parfrey, Laura Wegener</creator><creator>Woodhams, Douglas C</creator><creator>Archer, Holly M</creator><creator>Knight, Rob</creator><creator>McKenzie, Valerie J</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>amphibian skin‐associated microbiome across species, space and life history stages</title><author>Kueneman, Jordan G ; Parfrey, Laura Wegener ; Woodhams, Douglas C ; Archer, Holly M ; Knight, Rob ; McKenzie, Valerie J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4810-3ba54d7a5d2572672b2281d2f5977409c86a444cdb8c65e86a04333d801027683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actinobacteria</topic><topic>alpha-Proteobacteria</topic><topic>amphibians</topic><topic>Amphibians - microbiology</topic><topic>Animals</topic><topic>bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>bacterial communities</topic><topic>Biodiversity</topic><topic>California</topic><topic>community structure</topic><topic>disease resistance</topic><topic>DNA, Bacterial - genetics</topic><topic>environmental factors</topic><topic>Evolutionary biology</topic><topic>gamma-Proteobacteria</topic><topic>genes</topic><topic>Lakes</topic><topic>Larva - microbiology</topic><topic>Lithobates catesbeianus</topic><topic>metamorphosis</topic><topic>Microbiology</topic><topic>microbiome</topic><topic>Microbiota</topic><topic>pathogens</topic><topic>phenotype</topic><topic>Rana</topic><topic>Ranidae - microbiology</topic><topic>Reptiles & amphibians</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Skin</topic><topic>Skin - microbiology</topic><topic>Soil Microbiology</topic><topic>Species Specificity</topic><topic>Sphingobacteria</topic><topic>symbionts</topic><topic>Symbiosis</topic><topic>tadpoles</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kueneman, Jordan G</creatorcontrib><creatorcontrib>Parfrey, Laura Wegener</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><creatorcontrib>Archer, Holly M</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>McKenzie, Valerie J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kueneman, Jordan G</au><au>Parfrey, Laura Wegener</au><au>Woodhams, Douglas C</au><au>Archer, Holly M</au><au>Knight, Rob</au><au>McKenzie, Valerie J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>amphibian skin‐associated microbiome across species, space and life history stages</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2014-03</date><risdate>2014</risdate><volume>23</volume><issue>6</issue><spage>1238</spage><epage>1250</epage><pages>1238-1250</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Skin‐associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high‐throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian‐associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24171949</pmid><doi>10.1111/mec.12510</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2014-03, Vol.23 (6), p.1238-1250 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1508425842 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Actinobacteria alpha-Proteobacteria amphibians Amphibians - microbiology Animals bacteria Bacteria - classification Bacteria - genetics bacterial communities Biodiversity California community structure disease resistance DNA, Bacterial - genetics environmental factors Evolutionary biology gamma-Proteobacteria genes Lakes Larva - microbiology Lithobates catesbeianus metamorphosis Microbiology microbiome Microbiota pathogens phenotype Rana Ranidae - microbiology Reptiles & amphibians ribosomal RNA RNA, Ribosomal, 16S - genetics Sequence Analysis, DNA Skin Skin - microbiology Soil Microbiology Species Specificity Sphingobacteria symbionts Symbiosis tadpoles Water Microbiology |
title | amphibian skin‐associated microbiome across species, space and life history stages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=amphibian%20skin%E2%80%90associated%20microbiome%20across%20species,%20space%20and%20life%20history%20stages&rft.jtitle=Molecular%20ecology&rft.au=Kueneman,%20Jordan%20G&rft.date=2014-03&rft.volume=23&rft.issue=6&rft.spage=1238&rft.epage=1250&rft.pages=1238-1250&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12510&rft_dat=%3Cproquest_cross%3E1508425842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507761520&rft_id=info:pmid/24171949&rfr_iscdi=true |