Sprays metrizable by Finsler functions of constant flag curvature

In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of seco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2013-06, Vol.31 (3), p.405-415
Hauptverfasser: Bucataru, Ioan, Muzsnay, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 3
container_start_page 405
container_title Differential geometry and its applications
container_volume 31
creator Bucataru, Ioan
Muzsnay, Zoltán
description In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.
doi_str_mv 10.1016/j.difgeo.2013.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506406381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926224513000090</els_id><sourcerecordid>1506406381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKv_wEOOXnZ987FfF6EUq0LBg3oO2fRNSdnu1iRbqL_elPXsaeYwMzAPIfcMcgasfNzlG2e3OOQcmMiB5wDsgsxYXfGsbGp5SWbQ8DLjXBbX5CaEXQrwRvIZWXwcvD4Fusfo3Y9uO6Ttia5cHzr01I69iW7oAx0sNUmj7iO1nd5SM_qjjqPHW3JldRfw7k_n5Gv1_Ll8zdbvL2_LxTozoi5ihnWFTIKVFmrkFTYN06LhHLEF1jJWlUYWWvNCiuSbTXLAoEQmtGwEcjEnD9PuwQ_fI4ao9i4Y7Drd4zAGxQooJZSiZikqp6jxQwgerTp4t9f-pBioMzG1UxMxdSamgKsEJNWephqmG0eHXgXjsDe4cR5NVJvB_T_wCy9-dUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506406381</pqid></control><display><type>article</type><title>Sprays metrizable by Finsler functions of constant flag curvature</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bucataru, Ioan ; Muzsnay, Zoltán</creator><creatorcontrib>Bucataru, Ioan ; Muzsnay, Zoltán</creatorcontrib><description>In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.</description><identifier>ISSN: 0926-2245</identifier><identifier>EISSN: 1872-6984</identifier><identifier>DOI: 10.1016/j.difgeo.2013.02.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Curvature ; Differential equations ; Differential geometry ; Equivalence ; Finsler metrizability ; Flag curvature ; Flags ; Isotropic sprays ; Mathematical analysis ; Sprayers ; Sprays</subject><ispartof>Differential geometry and its applications, 2013-06, Vol.31 (3), p.405-415</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</citedby><cites>FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926224513000090$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bucataru, Ioan</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><title>Sprays metrizable by Finsler functions of constant flag curvature</title><title>Differential geometry and its applications</title><description>In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.</description><subject>Curvature</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Equivalence</subject><subject>Finsler metrizability</subject><subject>Flag curvature</subject><subject>Flags</subject><subject>Isotropic sprays</subject><subject>Mathematical analysis</subject><subject>Sprayers</subject><subject>Sprays</subject><issn>0926-2245</issn><issn>1872-6984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKv_wEOOXnZ987FfF6EUq0LBg3oO2fRNSdnu1iRbqL_elPXsaeYwMzAPIfcMcgasfNzlG2e3OOQcmMiB5wDsgsxYXfGsbGp5SWbQ8DLjXBbX5CaEXQrwRvIZWXwcvD4Fusfo3Y9uO6Ttia5cHzr01I69iW7oAx0sNUmj7iO1nd5SM_qjjqPHW3JldRfw7k_n5Gv1_Ll8zdbvL2_LxTozoi5ihnWFTIKVFmrkFTYN06LhHLEF1jJWlUYWWvNCiuSbTXLAoEQmtGwEcjEnD9PuwQ_fI4ao9i4Y7Drd4zAGxQooJZSiZikqp6jxQwgerTp4t9f-pBioMzG1UxMxdSamgKsEJNWephqmG0eHXgXjsDe4cR5NVJvB_T_wCy9-dUg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Bucataru, Ioan</creator><creator>Muzsnay, Zoltán</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201306</creationdate><title>Sprays metrizable by Finsler functions of constant flag curvature</title><author>Bucataru, Ioan ; Muzsnay, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Curvature</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Equivalence</topic><topic>Finsler metrizability</topic><topic>Flag curvature</topic><topic>Flags</topic><topic>Isotropic sprays</topic><topic>Mathematical analysis</topic><topic>Sprayers</topic><topic>Sprays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucataru, Ioan</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential geometry and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucataru, Ioan</au><au>Muzsnay, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sprays metrizable by Finsler functions of constant flag curvature</atitle><jtitle>Differential geometry and its applications</jtitle><date>2013-06</date><risdate>2013</risdate><volume>31</volume><issue>3</issue><spage>405</spage><epage>415</epage><pages>405-415</pages><issn>0926-2245</issn><eissn>1872-6984</eissn><abstract>In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.difgeo.2013.02.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2245
ispartof Differential geometry and its applications, 2013-06, Vol.31 (3), p.405-415
issn 0926-2245
1872-6984
language eng
recordid cdi_proquest_miscellaneous_1506406381
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Curvature
Differential equations
Differential geometry
Equivalence
Finsler metrizability
Flag curvature
Flags
Isotropic sprays
Mathematical analysis
Sprayers
Sprays
title Sprays metrizable by Finsler functions of constant flag curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sprays%20metrizable%20by%20Finsler%20functions%20of%20constant%20flag%20curvature&rft.jtitle=Differential%20geometry%20and%20its%20applications&rft.au=Bucataru,%20Ioan&rft.date=2013-06&rft.volume=31&rft.issue=3&rft.spage=405&rft.epage=415&rft.pages=405-415&rft.issn=0926-2245&rft.eissn=1872-6984&rft_id=info:doi/10.1016/j.difgeo.2013.02.001&rft_dat=%3Cproquest_cross%3E1506406381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506406381&rft_id=info:pmid/&rft_els_id=S0926224513000090&rfr_iscdi=true