Sprays metrizable by Finsler functions of constant flag curvature
In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of seco...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2013-06, Vol.31 (3), p.405-415 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 3 |
container_start_page | 405 |
container_title | Differential geometry and its applications |
container_volume | 31 |
creator | Bucataru, Ioan Muzsnay, Zoltán |
description | In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature. |
doi_str_mv | 10.1016/j.difgeo.2013.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1506406381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926224513000090</els_id><sourcerecordid>1506406381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKv_wEOOXnZ987FfF6EUq0LBg3oO2fRNSdnu1iRbqL_elPXsaeYwMzAPIfcMcgasfNzlG2e3OOQcmMiB5wDsgsxYXfGsbGp5SWbQ8DLjXBbX5CaEXQrwRvIZWXwcvD4Fusfo3Y9uO6Ttia5cHzr01I69iW7oAx0sNUmj7iO1nd5SM_qjjqPHW3JldRfw7k_n5Gv1_Ll8zdbvL2_LxTozoi5ihnWFTIKVFmrkFTYN06LhHLEF1jJWlUYWWvNCiuSbTXLAoEQmtGwEcjEnD9PuwQ_fI4ao9i4Y7Drd4zAGxQooJZSiZikqp6jxQwgerTp4t9f-pBioMzG1UxMxdSamgKsEJNWephqmG0eHXgXjsDe4cR5NVJvB_T_wCy9-dUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506406381</pqid></control><display><type>article</type><title>Sprays metrizable by Finsler functions of constant flag curvature</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bucataru, Ioan ; Muzsnay, Zoltán</creator><creatorcontrib>Bucataru, Ioan ; Muzsnay, Zoltán</creatorcontrib><description>In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.</description><identifier>ISSN: 0926-2245</identifier><identifier>EISSN: 1872-6984</identifier><identifier>DOI: 10.1016/j.difgeo.2013.02.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Curvature ; Differential equations ; Differential geometry ; Equivalence ; Finsler metrizability ; Flag curvature ; Flags ; Isotropic sprays ; Mathematical analysis ; Sprayers ; Sprays</subject><ispartof>Differential geometry and its applications, 2013-06, Vol.31 (3), p.405-415</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</citedby><cites>FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926224513000090$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Bucataru, Ioan</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><title>Sprays metrizable by Finsler functions of constant flag curvature</title><title>Differential geometry and its applications</title><description>In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.</description><subject>Curvature</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Equivalence</subject><subject>Finsler metrizability</subject><subject>Flag curvature</subject><subject>Flags</subject><subject>Isotropic sprays</subject><subject>Mathematical analysis</subject><subject>Sprayers</subject><subject>Sprays</subject><issn>0926-2245</issn><issn>1872-6984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKv_wEOOXnZ987FfF6EUq0LBg3oO2fRNSdnu1iRbqL_elPXsaeYwMzAPIfcMcgasfNzlG2e3OOQcmMiB5wDsgsxYXfGsbGp5SWbQ8DLjXBbX5CaEXQrwRvIZWXwcvD4Fusfo3Y9uO6Ttia5cHzr01I69iW7oAx0sNUmj7iO1nd5SM_qjjqPHW3JldRfw7k_n5Gv1_Ll8zdbvL2_LxTozoi5ihnWFTIKVFmrkFTYN06LhHLEF1jJWlUYWWvNCiuSbTXLAoEQmtGwEcjEnD9PuwQ_fI4ao9i4Y7Drd4zAGxQooJZSiZikqp6jxQwgerTp4t9f-pBioMzG1UxMxdSamgKsEJNWephqmG0eHXgXjsDe4cR5NVJvB_T_wCy9-dUg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Bucataru, Ioan</creator><creator>Muzsnay, Zoltán</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201306</creationdate><title>Sprays metrizable by Finsler functions of constant flag curvature</title><author>Bucataru, Ioan ; Muzsnay, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e87e140f4f08e27e991a3922eeb01b1176c45aa25431769da250106e13a493e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Curvature</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Equivalence</topic><topic>Finsler metrizability</topic><topic>Flag curvature</topic><topic>Flags</topic><topic>Isotropic sprays</topic><topic>Mathematical analysis</topic><topic>Sprayers</topic><topic>Sprays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bucataru, Ioan</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential geometry and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bucataru, Ioan</au><au>Muzsnay, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sprays metrizable by Finsler functions of constant flag curvature</atitle><jtitle>Differential geometry and its applications</jtitle><date>2013-06</date><risdate>2013</risdate><volume>31</volume><issue>3</issue><spage>405</spage><epage>415</epage><pages>405-415</pages><issn>0926-2245</issn><eissn>1872-6984</eissn><abstract>In this paper we characterize sprays that are metrizable by Finsler functions of constant flag curvature. By solving a particular case of the Finsler metrizability problem, we provide the necessary and sufficient conditions that can be used to decide whether or not a given homogeneous system of second order ordinary differential equations represents the geodesic equations of a Finsler function of constant flag curvature. The conditions we provide are tensorial equations on the Jacobi endomorphism. We identify the class of homogeneous SODE where the Finsler metrizability is equivalent with the metrizability by a Finsler function of constant flag curvature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.difgeo.2013.02.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2245 |
ispartof | Differential geometry and its applications, 2013-06, Vol.31 (3), p.405-415 |
issn | 0926-2245 1872-6984 |
language | eng |
recordid | cdi_proquest_miscellaneous_1506406381 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Curvature Differential equations Differential geometry Equivalence Finsler metrizability Flag curvature Flags Isotropic sprays Mathematical analysis Sprayers Sprays |
title | Sprays metrizable by Finsler functions of constant flag curvature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sprays%20metrizable%20by%20Finsler%20functions%20of%20constant%20flag%20curvature&rft.jtitle=Differential%20geometry%20and%20its%20applications&rft.au=Bucataru,%20Ioan&rft.date=2013-06&rft.volume=31&rft.issue=3&rft.spage=405&rft.epage=415&rft.pages=405-415&rft.issn=0926-2245&rft.eissn=1872-6984&rft_id=info:doi/10.1016/j.difgeo.2013.02.001&rft_dat=%3Cproquest_cross%3E1506406381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506406381&rft_id=info:pmid/&rft_els_id=S0926224513000090&rfr_iscdi=true |